Solveeit Logo

Question

Question: If \(\cos \left( 2{{\sin }^{-1}}x \right)=\dfrac{1}{9}\), then find the value of x....

If cos(2sin1x)=19\cos \left( 2{{\sin }^{-1}}x \right)=\dfrac{1}{9}, then find the value of x.

Explanation

Solution

Hint: Use the fact that cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x and hence prove that cos(2sin1x)=12sin2(sin1x)\cos \left( 2{{\sin }^{-1}}x \right)=1-2{{\sin }^{2}}\left( {{\sin }^{-1}}x \right). Use the fact that sin(sin1x)=xx[1,1]\sin \left( {{\sin }^{-1}}x \right)=x\forall x\in \left[ -1,1 \right] and hence prove that the given equation is equivalent to the equation 12x2=191-2{{x}^{2}}=\dfrac{1}{9} in the interval [1,1]\left[ -1,1 \right]. Hence find the value of x in the given interval which satisfies the given equation. Verify your answer.

Complete step-by-step answer:

Before dwelling into the solution of the above question, we must understand how sin1x{{\sin }^{-1}}x is defined even when sinx\sin x is not one-one.
We know that sinx is a periodic function.
Let us draw the graph of sinx

As is evident from the graph sinx is a repeated chunk of the graph of sinx within the interval [A,B]\left[ A,B \right] , and it attains all its possible values in the interval [A,C]\left[ A,C \right]. Here A=π2,B=3π2A=\dfrac{-\pi }{2},B=\dfrac{3\pi }{2} and C=π2C=\dfrac{\pi }{2}
Hence if we consider sinx in the interval [A, C], we will lose no value attained by sinx, and at the same time, sinx will be one-one and onto.
Hence arcsinx\arcsin x is defined over the domain [1,1]\left[ -1,1 \right], with codomain [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] as in the domain [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right], sinx is one-one and Rsinx=[1,1]{{R}_{\sin x}}=\left[ -1,1 \right].
Now, we have y=sin1xx=sinyy={{\sin }^{-1}}x\Rightarrow x=\sin y
Hence, we have sin(sin1x)=siny=x\sin \left( {{\sin }^{-1}}x \right)=\sin y=x provided x in the domain [1,1]\left[ -1,1 \right].
Now, we know that cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x
Replace x by sin1x{{\sin }^{-1}}x, we get
cos(2sin1x)= ˋ12sin2(sin1x)\cos \left( 2{{\sin }^{-1}}x \right)=\grave{\ }1-2{{\sin }^{2}}\left( {{\sin }^{-1}}x \right)
Now, we know that sin(sin1x)=x\sin \left( {{\sin }^{-1}}x \right)=x
Hence ,we have cos(2sin1x)=12x2,x[1,1]\cos \left( 2{{\sin }^{-1}}x \right)=1-2{{x}^{2}},x\in \left[ -1,1 \right]
Hence, we have 12x2=191-2{{x}^{2}}=\dfrac{1}{9}
Adding 2x22{{x}^{2}} on both sides, we get
2x2+19=12{{x}^{2}}+\dfrac{1}{9}=1
Subtracting 19\dfrac{1}{9} on both sides, we get
2x2=892{{x}^{2}}=\dfrac{8}{9}
Dividing both sides by 2, we get
x2=49x=±23{{x}^{2}}=\dfrac{4}{9}\Rightarrow x=\pm \dfrac{2}{3}
Since both 23\dfrac{2}{3} and 23-\dfrac{2}{3} are in the range [1,1]\left[ -1,1 \right], we have
x=23x=\dfrac{2}{3} and x=23x=-\dfrac{2}{3} are the roots of the given equation.

Note: [1] Verification:
We have x = 23\dfrac{2}{3}
Hence, we have cos(2sin1x)=12(x)2=12(49)=19\cos \left( 2{{\sin }^{-1}}x \right)=1-2{{\left( x \right)}^{2}}=1-2\left( \dfrac{4}{9} \right)=\dfrac{1}{9}
Similar for x=23x=-\dfrac{2}{3}, we have cos(2sin1x)=19\cos \left( 2{{\sin }^{-1}}x \right)=\dfrac{1}{9}.
Hence our answer is verified to be correct.

[2] Graphical method:

As is evident from the graph two solutions A and B exist.