Solveeit Logo

Question

Question: If \(\cos ecx - \cot x = \dfrac{1}{3}\), where \(x \ne 0\), then the value of \({\cos ^2}x - {\sin ^...

If cosecxcotx=13\cos ecx - \cot x = \dfrac{1}{3}, where x0x \ne 0, then the value of cos2xsin2x{\cos ^2}x - {\sin ^2}x is
A. 1625\dfrac{{16}}{{25}}
B. 925\dfrac{9}{{25}}
C. 825\dfrac{8}{{25}}
D. 725\dfrac{7}{{25}}

Explanation

Solution

To solve this question, we will use some basic trigonometric identities and algebraic identities to evaluate the given expression. We have to remember cosec2xcot2x=1\cos e{c^2}x - {\cot ^2}x = 1, also a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)

Complete step-by-step answer:
Given that,
cosecxcotx=13\cos ecx - \cot x = \dfrac{1}{3} …….. (i)
We know that,
cosec2xcot2x=1\cos e{c^2}x - {\cot ^2}x = 1
Using the identity, a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right), we will expand the L.H.S,
cosec2xcot2x=(cosecxcotx)(cosecx+cotx)\Rightarrow \cos e{c^2}x - {\cot ^2}x = \left( {\cos ecx - \cot x} \right)\left( {\cos ecx + \cot x} \right)
Put the value of cosecxcotx=13\cos ecx - \cot x = \dfrac{1}{3},
cosec2xcot2x=13(cosecx+cotax)\Rightarrow \cos e{c^2}x - {\cot ^2}x = \dfrac{1}{3}\left( {\cos ecx + \cot ax} \right)
Equating this L.H.S with R.H.S, we will get
13(cosecx+cotx)=1\Rightarrow \dfrac{1}{3}\left( {\cos ecx + \cot x} \right) = 1
cosecx+cotx=3\Rightarrow \cos ecx + \cot x = 3 ……… (ii)
Adding equation (i) and (ii), we will get
cosecx+cotx+cosecxcotx=13+3\Rightarrow \cos ecx + \cot x + \cos ecx - \cot x = \dfrac{1}{3} + 3
2cosecx=103\Rightarrow 2\cos ecx = \dfrac{{10}}{3}
cosecx=53\Rightarrow \cos ecx = \dfrac{5}{3}
Putting this value in equation (ii), we will get
53+cotx=3\Rightarrow \dfrac{5}{3} + \cot x = 3
cotx=353\Rightarrow \cot x = 3 - \dfrac{5}{3}
cotx=43\Rightarrow \cot x = \dfrac{4}{3}
Now, we know that
sinx=1cosecx\Rightarrow \sin x = \dfrac{1}{{\cos ecx}}
Putting the value of cosec x, we will get
sinx=153\Rightarrow \sin x = \dfrac{1}{{\dfrac{5}{3}}}
sinx=35\Rightarrow \sin x = \dfrac{3}{5}
Similarly, we know that
cotx=cosxsinx\Rightarrow \cot x = \dfrac{{\cos x}}{{\sin x}}
cosx=cotxsinx\Rightarrow \cos x = \cot x\sin x
Again, putting the values of sin x and cot x, we will get
cosx=43×35\Rightarrow \cos x = \dfrac{4}{3} \times \dfrac{3}{5}
Solving this, we will get
cosx=45\Rightarrow \cos x = \dfrac{4}{5}
We have to find out the value of cos2xsin2x{\cos ^2}x - {\sin ^2}x
So,
Putting the values of sin x and cos x, we will get
(45)2(35)2\Rightarrow {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2}
1625925\Rightarrow \dfrac{{16}}{{25}} - \dfrac{9}{{25}}
725\Rightarrow \dfrac{7}{{25}}
Hence, the value of cos2xsin2x{\cos ^2}x - {\sin ^2}x is 725\dfrac{7}{{25}}

So, the correct answer is “Option D”.

Note: Whenever we are asked such types of questions, we have to remember the trigonometric ratios of cos x and sin x. First, we have to simplify the given expression in terms of sin x and cos x and then by solving it we will get their values. After that, we will put those values in the required expression and we will get the correct answer.