Solveeit Logo

Question

Question: If \[\cos ecA - \cot A = \dfrac{3}{2}\]. Find the value of \[\cos A\]...

If cosecAcotA=32\cos ecA - \cot A = \dfrac{3}{2}. Find the value of cosA\cos A

Explanation

Solution

We use the property of trigonometry 1+cot2x=cosec2x1 + {\cot ^2}x = \cos e{c^2}x and bring constant to one side. Apply the formula of a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b) and open the trigonometric term. Using two equations and substitution methods using the value of cosecant of the angle. Use the fact that cosecant is reciprocal of sine function and then use the formula sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 to find the cosine of the angle.

Complete step-by-step solution:
We know cosecAcotA=32\cos ecA - \cot A = \dfrac{3}{2}.................… (1)
We know 1+cot2A=cosec2A1 + {\cot ^2}A = \cos e{c^2}A
Shift constant value to one side of the equation
1=cosec2Acot2A\Rightarrow 1 = \cos e{c^2}A - {\cot ^2}A.....................… (2)
Now use the identity a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b)to open the terms in RHS
cosec2Acot2A=(cosecAcotA)(cosecA+cotA)\Rightarrow \cos e{c^2}A - {\cot ^2}A = (\cos ecA - \cot A)(\cos ecA + \cot A)
Put the values in LHS using equation (1) and in RHS using equation (2)
1=32(cosecA+cotA)\Rightarrow 1 = \dfrac{3}{2}(\cos ecA + \cot A)
Multiply both sides by 23\dfrac{2}{3}
23=23×32(cosecA+cotA)\Rightarrow \dfrac{2}{3} = \dfrac{2}{3} \times \dfrac{3}{2}(\cos ecA + \cot A)
Cancel same terms in RHS
23=cosecA+cotA\Rightarrow \dfrac{2}{3} = \cos ecA + \cot A.................… (3)
From equation (1) cosecA32=cotA\cos ecA - \dfrac{3}{2} = \cot A
Substitute this value in equation (3)
23=cosecA+cosecA32\Rightarrow \dfrac{2}{3} = \cos ecA + \cos ecA - \dfrac{3}{2}
Shift all constants on one side of the equation
23+32=2cosecA\Rightarrow \dfrac{2}{3} + \dfrac{3}{2} = 2\cos ecA
Take LCM in LHS
2×2+3×36=2cosecA\Rightarrow \dfrac{{2 \times 2 + 3 \times 3}}{6} = 2\cos ecA
4+96=2cosecA\Rightarrow \dfrac{{4 + 9}}{6} = 2\cos ecA
136=2cosecA\Rightarrow \dfrac{{13}}{6} = 2\cos ecA
Divide both sides of the equation by 2
136×2=cosecA\Rightarrow \dfrac{{13}}{{6 \times 2}} = \cos ecA
1312=cosecA\Rightarrow \dfrac{{13}}{{12}} = \cos ecA
Since we know cosecx=1sinx\cos ecx = \dfrac{1}{{\sin x}}
sinA=1213\Rightarrow \sin A = \dfrac{{12}}{{13}}................… (4)
Now we know sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
cos2A=1sin2A\Rightarrow {\cos ^2}A = 1 - {\sin ^2}A
Put the value of sine from equation (4)
cos2A=1(1213)2\Rightarrow {\cos ^2}A = 1 - {\left( {\dfrac{{12}}{{13}}} \right)^2}
cos2A=1(144169)\Rightarrow {\cos ^2}A = 1 - \left( {\dfrac{{144}}{{169}}} \right)
Take LCM in RHS of the equation
cos2A=169144169\Rightarrow {\cos ^2}A = \dfrac{{169 - 144}}{{169}}
cos2A=25169\Rightarrow {\cos ^2}A = \dfrac{{25}}{{169}}
We can write 25=52,169=13225 = {5^2},169 = {13^2}in RHS
cos2A=52132\Rightarrow {\cos ^2}A = \dfrac{{{5^2}}}{{{{13}^2}}}
Take square root on both sides of the equation
cos2A=52132\Rightarrow \sqrt {{{\cos }^2}A} = \sqrt {\dfrac{{{5^2}}}{{{{13}^2}}}}
Cancel square root by square power on both sides of the equation
cosA=513\Rightarrow \cos A = \dfrac{5}{{13}}

\therefore The value of cosA\cos A is 513\dfrac{5}{{13}}

Note: Students many times make mistake of using the value of cosecant from equation (1) and use it in substitution, this will give us the value of cotangent and then we will have to involve lot more steps to reach up to the value of cosecant. Students are advised to directly aim for the value of cosecant as it will give us the value of sine easily which helps to find cosine value.