Solveeit Logo

Question

Question: If \(\cos ec\theta - \sin \theta = {a^3}\);\(\sec \theta - \cos \theta = {b^3}\) then \({a^2}{b^2}({...

If cosecθsinθ=a3\cos ec\theta - \sin \theta = {a^3};secθcosθ=b3\sec \theta - \cos \theta = {b^3} then a2b2(a2+b2)={a^2}{b^2}({a^2} + {b^2}) =
A) 1
B) 2
C) sin2θ{\sin ^2}\theta

Explanation

Solution

This problem involves trigonometric equations with respective relations. For solving this, we require few basic trigonometric formulas such as, cosecθ=1sinθ\cos ec\theta = \dfrac{1}{{\sin \theta }} , secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }} , sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 . Thus using proper trigonometric formulas in the needed time will lead us to the solution.

Complete step-by-step answer:
Step 1: Let us start by simplifying the given equation into a much more simpler form as we can. First let us name the two given relations as Formula 1 and 2.
cosecθsinθ=a3\cos ec\theta - \sin \theta = {a^3} … Formula 1
secθcosθ=b3\sec \theta - \cos \theta = {b^3} … Formula 2
Step 2: Now using the formula, cosecθ=1sinθ\cos ec\theta = \dfrac{1}{{\sin \theta }} in Formula 1 we get,
1sinθsinθ=a3\dfrac{1}{{\sin \theta }} - \sin \theta = {a^3}
Simplifying above by taking LCM on RHS, we get
1sin2θsinθ=a3\dfrac{{1 - {{\sin }^2}\theta }}{{\sin \theta }} = {a^3}
cos2θsinθ=a3\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }} = {a^3} Since sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 imples 1sin2θ=cos2θ1 - {\sin ^2}\theta = {\cos ^2}\theta
Solving for a, we get
a=(cos2θsinθ)13a = {\left( {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right)^{\dfrac{1}{3}}}
Step 3: Similarly we solve for ‘b’ by using the formulas secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }} and 1cos2θ=sin2θ1 - {\cos ^2}\theta = {\sin ^2}\theta
Thus b=(sin2θcosθ)13b = {\left( {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}} \right)^{\dfrac{1}{3}}}
Step 4: We have obtained a and b in terms of sin and cosine functions. Now let us check for what we have to prove, which is a2b2(a2+b2){a^2}{b^2}({a^2} + {b^2}) Expanding the bracket we get,
a2b2(a2+b2)=a4b2+a2b4{a^2}{b^2}({a^2} + {b^2}) = {a^4}{b^2} + {a^2}{b^4}
Substituting the values obtained for a and b,
(cos2θsinθ)43(sin2θcosθ)23+(cos2θsinθ)23(sin2θcosθ)43{\left( {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right)^{\dfrac{4}{3}}}{\left( {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}} \right)^{\dfrac{2}{3}}} + {\left( {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right)^{\dfrac{2}{3}}}{\left( {\dfrac{{{{\sin }^2}\theta }}{{\cos \theta }}} \right)^{\dfrac{4}{3}}} (Since (xm)n=xmn{\left( {{x^m}} \right)^n} = {x^{mn}} )
=(cos2θ)43(cosθ)23(sin2θ)23(sinθ)43+(cos2θ)23(cosθ)43(sin2θ)43(sinθ)23= \dfrac{{{{\left( {{{\cos }^2}\theta } \right)}^{\dfrac{4}{3}}}}}{{{{(\cos \theta )}^{\dfrac{2}{3}}}}}\dfrac{{{{\left( {{{\sin }^2}\theta } \right)}^{\dfrac{2}{3}}}}}{{{{\left( {\sin \theta } \right)}^{\dfrac{4}{3}}}}} + \dfrac{{{{\left( {{{\cos }^2}\theta } \right)}^{\dfrac{2}{3}}}}}{{{{(\cos \theta )}^{\dfrac{4}{3}}}}}\dfrac{{{{\left( {{{\sin }^2}\theta } \right)}^{\dfrac{4}{3}}}}}{{{{\left( {\sin \theta } \right)}^{\dfrac{2}{3}}}}}
Simplifying the powers of each term,
=(cosθ)83(cosθ)23(sinθ)43(sinθ)43+(cosθ)43(cosθ)43(sinθ)83(sinθ)23= \dfrac{{{{\left( {\cos \theta } \right)}^{\dfrac{8}{3}}}}}{{{{(\cos \theta )}^{\dfrac{2}{3}}}}}\dfrac{{{{\left( {\sin \theta } \right)}^{\dfrac{4}{3}}}}}{{{{\left( {\sin \theta } \right)}^{\dfrac{4}{3}}}}} + \dfrac{{{{\left( {\cos \theta } \right)}^{\dfrac{4}{3}}}}}{{{{(\cos \theta )}^{\dfrac{4}{3}}}}}\dfrac{{{{\left( {\sin \theta } \right)}^{\dfrac{8}{3}}}}}{{{{\left( {\sin \theta } \right)}^{\dfrac{2}{3}}}}} (Since (cosmθ)n=(cosθ)mn{({\cos ^m}\theta )^n} = {(\cos \theta )^{mn}})
=(cosθ)8323.(sinθ)4343+(cosθ)4343.(sinθ)8323= {(\cos \theta )^{\dfrac{8}{3} - \dfrac{2}{3}}}.{(\sin \theta )^{\dfrac{4}{3} - \dfrac{4}{3}}} + {(\cos \theta )^{\dfrac{4}{3} - \dfrac{4}{3}}}.{(\sin \theta )^{\dfrac{8}{3} - \dfrac{2}{3}}}
=(cosθ)63.(sinθ)0+(cosθ)0.(sinθ)63= {(\cos \theta )^{\dfrac{6}{3}}}.{(\sin \theta )^0} + {(\cos \theta )^0}.{(\sin \theta )^{\dfrac{6}{3}}}
As anything power zero is one, we obtain the above relation as,
cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1
Thus a2b2(a2+b2)=1{a^2}{b^2}({a^2} + {b^2}) = 1 which is option 1.
Final answer:
a2b2(a2+b2)=1{a^2}{b^2}({a^2} + {b^2}) =1

Thus option 1 is correct.

Note: Usage of needed basic trigonometric formulas is the important factor in solving similar questions. Power simplification is an error prone step which may lead easily to wrong conclusions. Also we can use other two basic trigonometric relations: tanθ=sinθcosθ,cotθ=cosθsinθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }} . As they have provided the trigonometric values of both a3{a^3}and b3{b^3} , we can substitute this directly to the expansion of a2b2(a2+b2){a^2}{b^2}({a^2} + {b^2}).