Solveeit Logo

Question

Question: If \(\cos ec\theta + \cot \theta = m\) and \(\cos ec\theta - \cot \theta = n\) , prove that mn=1....

If cosecθ+cotθ=m\cos ec\theta + \cot \theta = m and cosecθcotθ=n\cos ec\theta - \cot \theta = n , prove that mn=1.

Explanation

Solution

Hint: Here we have to simplify the equations using trigonometry identities to find the product of both equations.

Complete step-by-step answer:
Given cosecθ+cotθ=m\cos ec\theta + \cot \theta = m and cosecθcotθ=n\cos ec\theta - \cot \theta = n
To prove: mn=1
Taking LHS, mn=(cosecθ+cotθ)(cosecθcotθ)mn = \left( {\cos ec\theta + \cot \theta } \right)\left( {\cos ec\theta - \cot \theta } \right)
Using formula (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}
\Rightarrow mn=cosec2θcot2θmn = \cos e{c^2}\theta - {\cot ^2}\theta
We know that cosec2θ=1+cot2θcosec2θcot2θ=1\cos e{c^2}\theta = 1 + {\cot ^2}\theta \Rightarrow \cos e{c^2}\theta - {\cot ^2}\theta = 1
\Rightarrow mn=1=RHS
Hence Proved.

Note: These types of problems can be easily solved with the help of understanding of trigonometric identities and formulas.