Solveeit Logo

Question

Question: If \[\cos ec\left( {{{\tan }^{ - 1}}(\cos ({{\cot }^{ - 1}}(\sec ({{\sin }^{ - 1}}a))))} \right) = \...

If cosec(tan1(cos(cot1(sec(sin1a)))))=paq\cos ec\left( {{{\tan }^{ - 1}}(\cos ({{\cot }^{ - 1}}(\sec ({{\sin }^{ - 1}}a))))} \right) = \sqrt {p - {a^q}} , where ac[0,1].ac[0,1].
Find the value of p+qp + q .

Explanation

Solution

We have to find the value of p+qp + q . For this we take the left hand side of the expression. We have to solve sin1a{\sin ^{ - 1}}a . We convert sin1a{\sin ^{ - 1}}a into sec1{\sec ^{ - 1}} function once we have close, we convert cot1{\cot ^{ - 1}} function into cos1{\cos ^{ - 1}} function. After that we convert tan1{\tan ^{ - 1}} function into cosec1\cos e{c^{ - 1}} function. At the last we left with a value which will be free from inverse trigonometric function. Then we equate this value with the right hand side.

Complete step by step solution:
We have given that cosec(tan1(cos(cot1(sec(sin1a)))))=paq\cos ec\left( {{{\tan }^{ - 1}}(\cos ({{\cot }^{ - 1}}(\sec ({{\sin }^{ - 1}}a))))} \right) = \sqrt {p - {a^q}} where ac[0,1]ac[0,1]
We have to calculate the value of p+qp + q
L.H.S. = cosec(tan1(cos(cot1(sec(sin1a)))))\cos ec\left( {{{\tan }^{ - 1}}(\cos ({{\cot }^{ - 1}}(\sec ({{\sin }^{ - 1}}a))))} \right)
We have to convert sin1{\sin ^{ - 1}} function into sec1{\sec ^{ - 1}} function.
Let: sec1a=θ{\sec ^{ - 1}}a = \theta
a=secθa = \sec \theta
We know that sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
cos2θ=1sin2θ\Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta
cosθ=1sin2θ\Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta }
Also 1cosθ=11sin2θ\dfrac{1}{{\cos \theta }} = \dfrac{1}{{\sqrt {1 - {{\sin }^2}\theta } }}
\Rightarrow θ=sec1(11sin2θ)\theta = {\sec ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 - {{\sin }^2}\theta } }}} \right)
=secθ(11a2)= \sec \theta \left( {\dfrac{1}{{\sqrt {1 - {a^2}} }}} \right)
So, L.H.S. =cosec(tan1(cos(cot1(sec(sin111a2))))) = \cos ec\left( {{{\tan }^{ - 1}}(\cos ({{\cot }^{ - 1}}(\sec ({{\sin }^{ - 1}}\dfrac{1}{{\sqrt {1 - {a^2}} }}))))} \right)
=cosec(tan1(cos(cot1(11a2))))= \cos ec\left( {{{\tan }^{ - 1}}(\cos ({{\cot }^{ - 1}}(\dfrac{1}{{\sqrt {1 - {a^2}} }})))} \right)
Now we convert cot1{\cot ^{ - 1}} function into cos1{\cos ^{ - 1}} function
We will to it will the help of right angle triangle.

cot1(11a2)=θ{\cot ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 - {a^2}} }}} \right) = \theta
cotθ=11a2\cot \theta = \dfrac{1}{{\sqrt {1 - {a^2}} }}
We know that cotθ=BasePerpendicular\cot \theta = \dfrac{{Base}}{{Perpendicular}}
By Pythagoras theorem
\Rightarrow (Hypotenuse)2=(Base)2+(Perpendicular)2{\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Perpendicular} \right)^2}
\Rightarrow (Hypotenuse)2=(1)2+(1a2)2{\left( {Hypotenuse} \right)^2} = {\left( 1 \right)^2} + {\left( {\sqrt {1 - {a^2}} } \right)^2}
\Rightarrow (Hypotenuse)2=1+1a2{\left( {Hypotenuse} \right)^2} = 1 + 1 - {a^2}
\Rightarrow (Hypotenuse)2=2a2{\left( {Hypotenuse} \right)^2} = 2 - {a^2}
\Rightarrow Hypotenuse=2a2Hypotenuse = \sqrt {2 - {a^2}}
Therefore value of cosθ=BaseHypotenuse\cos \theta = \dfrac{{Base}}{{Hypotenuse}}
\Rightarrow cosθ=12a2\cos \theta = \dfrac{1}{{\sqrt {2 - {a^2}} }}
\Rightarrow θ=cos1(12a2)\theta = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {2 - {a^2}} }}} \right)
So L.H.S. =cosec(tan1(cos(cos1(12a2)))) = \cos ec\left( {{{\tan }^{ - 1}}(\cos ({{\cos }^{ - 1}}(\dfrac{1}{{\sqrt {2 - {a^2}} }})))} \right)
=cosec(tan1(12a2))= \cos ec\left( {{{\tan }^{ - 1}}(\dfrac{1}{{\sqrt {2 - {a^2}} }})} \right)
Now we convert tan1{\tan ^{ - 1}} function into cosec1\cos e{c^{ - 1}} function
Let tan112a2=θ{\tan ^{ - 1}}\dfrac{1}{{\sqrt {2 - {a^2}} }} = \theta
\Rightarrow tanθ=12a2\tan \theta = \dfrac{1}{{\sqrt {2 - {a^2}} }}
Also we know that tanθ=PerpendicularBase\tan \theta = \dfrac{{Perpendicular}}{{Base}}
Perpendicular =1= 1
Base =2a2= \sqrt {2 - {a^2}}
\Rightarrow (Hypotenuse)2=(Perpendicular)2+(Base)2{\left( {Hypotenuse} \right)^2} = {\left( {Perpendicular} \right)^2} + {\left( {Base} \right)^2}
\Rightarrow (Hypotenuse)2=(1)2+(2a2)2{\left( {Hypotenuse} \right)^2} = {\left( 1 \right)^2} + {\left( {\sqrt {2 - {a^2}} } \right)^2}
\Rightarrow (Hypotenuse)2=1+2a2{\left( {Hypotenuse} \right)^2} = 1 + 2 - {a^2}
Here we use addition then it will become 33
\Rightarrow (Hypotenuse)2=3a2{\left( {Hypotenuse} \right)^2} = 3 - {a^2}
\Rightarrow Hypotenuse=3a2Hypotenuse = \sqrt {3 - {a^2}}
So we have cosecθ=HypotenuseBase\cos ec\theta = \dfrac{{Hypotenuse}}{{Base}} =3a21 = \dfrac{{\sqrt {3 - {a^2}} }}{1}
\Rightarrow cosecθ=3a2\cos ec\theta = \sqrt {3 - {a^2}}
\Rightarrow θ=cosec1(3a2)\theta = \cos e{c^{ - 1}}\left( {\sqrt {3 - {a^2}} } \right)
Therefore L.H.S. =cosec(cosec1(3a2)) = \cos ec\left( {\cos e{c^{ - 1}}\left( {\sqrt {3 - {a^2}} } \right)} \right)
L.H.S. =3a2= \sqrt {3 - {a^2}}
Now we compare the left hand side with the right hand side.
3a2=pa2\Rightarrow \sqrt {3 - {a^2}} = \sqrt {p - {a^2}}
3a2=pa2\Rightarrow 3 - {a^2} = p - {a^2}
From above we get p=3p = 3 and q=2q = 2
So value of p+q=3+2=5p + q = 3 + 2 = 5
p+q=5p + q = 5

So, the correct answer is “Option C”.

Note: In mathematics, inverse trigonometric functions are inverse of the trigonometric functions. Specifically they are inverse of sine, cosine, tangent, cotangent, secant and cosecant functions. They are used to obtain an angle from any of the angle’s trigonometric operation of the trigonometric functions.