Solveeit Logo

Question

Question: If \( \cos ec\dfrac{\pi }{{32}} + \cos ec\dfrac{\pi }{{16}} + \cos ec\dfrac{\pi }{8} + \cos ec\dfrac...

If cosecπ32+cosecπ16+cosecπ8+cosecπ4+cosecπ2=cotπk\cos ec\dfrac{\pi }{{32}} + \cos ec\dfrac{\pi }{{16}} + \cos ec\dfrac{\pi }{8} + \cos ec\dfrac{\pi }{4} + \cos ec\dfrac{\pi }{2} = \cot \dfrac{\pi }{k}
Find k.

Explanation

Solution

Hint : For this type of problem we will simplify left hand side of given equation by using term cotπ2\cot \dfrac{\pi }{2} and grouping it with that cosec term which having same angle and then simplifying it by using trigonometric identity to get result and then using result obtain again in same manner till will completely simplify left hand side or convert it in term of cot then on comparing both side we will get value of k and hence required solution of given problem.
Formulas used: cosecx+cotx=cot(x2)\cos ecx + \cot x = \cot \left( {\dfrac{x}{2}} \right)

Complete step-by-step answer :
Given trigonometric equation is cosecπ32+cosecπ16+cosecπ8+cosecπ4+cosecπ2=cotπk\cos ec\dfrac{\pi }{{32}} + \cos ec\dfrac{\pi }{{16}} + \cos ec\dfrac{\pi }{8} + \cos ec\dfrac{\pi }{4} + \cos ec\dfrac{\pi }{2} = \cot \dfrac{\pi }{k} …………….(i)
To find the value of ‘k’. We will simplify the left hand side of the given trigonometric equation.
Considering the left hand side of the given equation. We have,
cosecπ32+cosecπ16+cosecπ8+cosecπ4+cosecπ2\cos ec\dfrac{\pi }{{32}} + \cos ec\dfrac{\pi }{{16}} + \cos ec\dfrac{\pi }{8} + \cos ec\dfrac{\pi }{4} + \cos ec\dfrac{\pi }{2}
To simplify the above equation we add the value of cotπ2\cot \dfrac{\pi }{2} in the above equation. It will not make any difference in the value of the equation as the value of cotπ2\cot \dfrac{\pi }{2} is zero.
Therefore, we have
cosecπ32+cosecπ16+cosecπ8+cosecπ4+cosecπ2+cotπ2\Rightarrow \cos ec\dfrac{\pi }{{32}} + \cos ec\dfrac{\pi }{{16}} + \cos ec\dfrac{\pi }{8} + \cos ec\dfrac{\pi }{4} + \cos ec\dfrac{\pi }{2} + \cot \dfrac{\pi }{2}
Now, applying trigonometric identity cosecx+cotx=cot(x2)\cos ecx + \cot x = \cot \left( {\dfrac{x}{2}} \right) on the last two terms of the above equation. WE have
cosecπ32+cosecπ16+cosecπ8+cosecπ4+cotπ4\Rightarrow \cos ec\dfrac{\pi }{{32}} + \cos ec\dfrac{\pi }{{16}} + \cos ec\dfrac{\pi }{8} + \cos ec\dfrac{\pi }{4} + \cot \dfrac{\pi }{4}
Now, again applying the same identity on the last two terms of the above equation. We have,
cosecπ32+cosecπ16+cosecπ8+cotπ8\cos ec\dfrac{\pi }{{32}} + \cos ec\dfrac{\pi }{{16}} + \cos ec\dfrac{\pi }{8} + \cot \dfrac{\pi }{8}
Again applying the same identity on the last two terms. We have,
cosecπ32+cosecπ16+cotπ16\Rightarrow \cos ec\dfrac{\pi }{{32}} + \cos ec\dfrac{\pi }{{16}} + \cot \dfrac{\pi }{{16}}
Again doing the same. We have
cosecπ32+cotπ32\Rightarrow \cos ec\dfrac{\pi }{{32}} + \cot \dfrac{\pi }{{32}}
Also, one more time doing the same.
cotπ64\Rightarrow \cot \dfrac{\pi }{{64}}
Therefore, from above we see that value of left hand side of given trigonometric equation is cotπ64\cot \dfrac{\pi }{{64}}
cosecπ32+cosecπ16+cosecπ8+cosecπ4+cosecπ2=cotπ64.....(ii)\Rightarrow \cos ec\dfrac{\pi }{{32}} + \cos ec\dfrac{\pi }{{16}} + \cos ec\dfrac{\pi }{8} + \cos ec\dfrac{\pi }{4} + \cos ec\dfrac{\pi }{2} = \cot \dfrac{\pi }{{64}}.....(ii)
Then form above equation (i) and (ii). We have
cotπk=cotπ64\Rightarrow \cot \dfrac{\pi }{k} = \cot \dfrac{\pi }{{64}}
On comparing above trigonometric terms. We have,
k=64\Rightarrow k = 64
Hence, the required value of k is 6464 .
So, the correct answer is “64”.

Note : For this type of problem if we apply any trigonometric identity on left hand side then it would not end in term of cotθ\cot \theta but there is a one half angle property with the help of which we can simplify or can find solution of given problem.
In this add cotπ2\cot \dfrac{\pi }{2} in the left hand side so that we can use the identity cosecx+cotx=cot(x2)\cos ecx + \cot x = \cot \left( {\dfrac{x}{2}} \right) . With the help of this identity we can simplify the left hand side with repeating the same steps again and again till we left with a single cotangent term which on equating with the right hand side gives out the value of k and hence the solution of given problem.