Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If cos α\alpha, cos β\beta, cos γ\gamma, are direction cosine of a line then value of sin2α+sin2β+sin2γ\sin^2 \, \alpha + \sin^2 \, \beta + \sin^2 \gamma is:

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

If a line OP makes angles α\alpha, β\beta, γ\gamma respectively with x, y, z axes, the direction cosines are cosα,cosβ,cosγ\cos \alpha, \cos \beta, \cos \gamma. Then, cos2α+cos2β+cos2γ=1\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 Consider sin2α+sin2β+sin2γ\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =1cos2α+1cos2β+1cos2γ= 1 - \cos^2 \alpha + 1 - \cos^2 \beta + 1 - \cos^2 \gamma =3(cos2α+cos2β+cos2γ)= 3 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) =31=2= 3 - 1 = 2