Question
Question: If \[\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma \], then pr...
If cosα+cosβ+cosγ=0=sinα+sinβ+sinγ, then prove that (cosα)2+(cosβ)2+(cosγ)2=23=(sinα)2+(sinβ)2+(sinγ)2.
Solution
Hint: Here, we will proceed by using the general representation for any complex number given by z=eiθ=cosθ+isinθ in order to find the values of (eiα+eiβ+eiγ) and (e−iα+e−iβ+e−iγ). Then, apply the formula (a+b+c)2=a2+b2+c2+2(ab+bc+ac) where a=eiα,b=eiβ,c=eiγ.
Complete step-by-step answer:
Given, cosα+cosβ+cosγ=0=sinα+sinβ+sinγ →(1)
To prove: (cosα)2+(cosβ)2+(cosγ)2=23=(sinα)2+(sinβ)2+(sinγ)2
Since, any complex number can be represented as z=eiθ=cosθ+isinθ →(2)
Using the formula given by equation (2), we can write
eiα=cosα+isinα →(3) eiβ=cosβ+isinβ →(4) eiγ=cosγ+isinγ →(5)
By adding equations (3), (4) and (5), we get
⇒eiα+eiβ+eiγ=cosα+isinα+cosβ+isinβ+cosγ+isinγ ⇒eiα+eiβ+eiγ=cosα+cosβ+cosγ+i(sinα+sinβ+sinγ)
Using equation (1) in the above equation, we get
⇒eiα+eiβ+eiγ=0+i(0) ⇒eiα+eiβ+eiγ=0 →(6)
Similarly, using the formula given by equation (2), we can write
e−iα=cos(−α)+isin(−α) →(7) e−iβ=cos(−β)+isin(−β) →(8) e−iγ=cos(−γ)+isin(−γ) →(9)
By adding equations (7), (8) and (9), we get
⇒e−iα+e−iβ+e−iγ=cos(−α)+isin(−α)+cos(−β)+isin(−β)+cos(−γ)+isin(−γ)
Using the formulas cos(−θ)=cosθ and sin(−θ)=−sinθ in the above equation, we get
Using equation (1) in the above equation, we get
⇒e−iα+e−iβ+e−iγ=0−i(0) ⇒e−iα+e−iβ+e−iγ=0 ⇒eiα1+eiβ1+eiγ1=0 ⇒eiαeiβeiγeiβeiγ+eiαeiγ+eiαeiβ=0 ⇒eiβeiγ+eiαeiγ+eiαeiβ=0 ⇒eiαeiβ+eiβeiγ+eiαeiγ=0 →(10)
Using the formula (a+b+c)2=a2+b2+c2+2(ab+bc+ac) and taking a=eiα,b=eiβ,c=eiγ, we get
By substituting equation (6) and equation (10) in the above equation, we get
⇒(0)2=e2iα+e2iβ+e2iγ+2(0) ⇒0=e2iα+e2iβ+e2iγ+0 ⇒e2iα+e2iβ+e2iγ=0 ⇒ei(2α)+ei(2β)+ei(2γ)=0
Using the formula given by equation (2) in the above equation, we have
⇒cos(2α)+isin(2α)+cos(2β)+isin(2β)+cos(2γ)+isin(2γ)=0 ⇒cos(2α)+cos(2β)+cos(2γ)+i[sin(2α)+sin(2β)+sin(2γ)]=0 →(11)
For any complex number z, a+ib=0 →(12), a = 0 and b = 0
By comparing equations (11) and (12), we have
a=cos(2α)+cos(2β)+cos(2γ)=0 ⇒cos(2α)+cos(2β)+cos(2γ)=0 →(13) and b=sin(2α)+sin(2β)+sin(2γ)=0
Using the trigonometric formula cos(2θ)=(cosθ)2−(sinθ)2 in equation (13), we get
⇒[(cosα)2−(sinα)2]+[(cosβ)2−(sinβ)2]+[(cosγ)2−(sinγ)2]=0 ⇒(cosα)2+(cosβ)2+(cosγ)2=(sinα)2+(sinβ)2+(sinγ)2 →(14)
Using the trigonometric identity
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} + 1 - {\left( {\cos \beta } \right)^2} + 1 - {\left( {\cos \gamma } \right)^2} \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} + {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = 1 + 1 + 1 \\
\Rightarrow 2\left[ {{{\left( {\cos \alpha } \right)}^2} + {{\left( {\cos \beta } \right)}^2} + {{\left( {\cos \gamma } \right)}^2}} \right] = 3 \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2}{\text{ }} \to {\text{(15)}} \\
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\cos \theta } \right)^2} = 1 - {\left( {\sin \theta } \right)^2} \\
\Rightarrow 1 - {\left( {\sin \alpha } \right)^2} + 1 - {\left( {\sin \beta } \right)^2} + 1 - {\left( {\sin \gamma } \right)^2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} \\
\Rightarrow 1 + 1 + 1 = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} + {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} \\
\Rightarrow 3 = 2\left[ {{{\left( {\sin \alpha } \right)}^2} + {{\left( {\sin \beta } \right)}^2} + {{\left( {\sin \gamma } \right)}^2}} \right] \\
\Rightarrow {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} = \dfrac{3}{2}{\text{ }} \to {\text{(16)}} \\