Question
Question: If \(\cos (\alpha + \beta ) = 0\), then find \(\sin (\alpha + 2\beta )\)....
If cos(α+β)=0, then find sin(α+2β).
Solution
There are trigonometric identities for sin(A+B) and cos(A+B). Using the formula of sin(A+B) we can expand the question. Then substitute using formulas of sin2A and cos2A. Then we can simplify and substitute for cos(α+β)=0, we get the answer.
Formula used: For any angles A,B we have these trigonometric relations.
cos(A+B)=cosAcosB−sinAsinB
sin(A+B)=sinAcosB+cosAsinB
sin2A=2sinAcosA
cos2A=1−2sin2A
Complete step-by-step answer:
Given cos(α+β)=0.
We are asked to find sin(α+2β).
We know that,
sin(A+B)=sinAcosB+cosAsinB
Let, A=α,B=2β
So we have,
sin(α+2β)=sinαcos2β+cosαsin2β−−−−−(i)
Also we have the relations,
cos2A=1−2sin2A
sin2A=2sinAcosA
This gives, cos2β=1−2sin2β and sin2β=2sinβcosβ
Substituting these, we have from equation (i),
⇒ sin(α+2β)=sinα(1−2sin2β)+cosα(2sinβcosβ)
Expanding the above equation we get,
⇒ sin(α+2β)=sinα−2sinαsin2β+2cosαsinβcosβ
Taking sinβ common from right hand side we get,
⇒ sin(α+2β)=sinα+2sinβ(cosαcosβ−sinαsinβ)−−−−−−(ii)
Now, cos(A+B)=cosAcosB−sinAsinB
Using this we can write equation (ii) as,
⇒ sin(α+2β)=sinα+2sinβcos(α+β)
But in the question it is given that,
cos(α+β)=0
Substituting this we have,
⇒ sin(α+2β)=sinα+2sinβ×0
⇒sin(α+2β)=sinα+0
So we have,
sin(α+2β)=sinα
∴ The answer is sinα.
Note: We have other trigonometric identities.
For some angle A,
sin2A=1+tan2A2tanA
cos2A=2cos2A−1
cos2A=cos2A−sin2A
Like these, we have other identities for sin,cos,tan,cosec,sec and cot.