Solveeit Logo

Question

Question: If \(\cos (\alpha + \beta ) = 0\), then find \(\sin (\alpha + 2\beta )\)....

If cos(α+β)=0\cos (\alpha + \beta ) = 0, then find sin(α+2β)\sin (\alpha + 2\beta ).

Explanation

Solution

There are trigonometric identities for sin(A+B)\sin (A + B) and cos(A+B)\cos (A + B). Using the formula of sin(A+B)\sin (A + B) we can expand the question. Then substitute using formulas of sin2A\sin 2A and cos2A\cos 2A. Then we can simplify and substitute for cos(α+β)=0\cos (\alpha + \beta ) = 0, we get the answer.

Formula used: For any angles A,BA,B we have these trigonometric relations.
cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B
sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
sin2A=2sinAcosA\sin 2A = 2\sin A\cos A
cos2A=12sin2A\cos 2A = 1 - 2{\sin ^2}A

Complete step-by-step answer:
Given cos(α+β)=0\cos (\alpha + \beta ) = 0.
We are asked to find sin(α+2β)\sin (\alpha + 2\beta ).
We know that,
sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
Let, A=α,B=2βA = \alpha ,B = 2\beta
So we have,
sin(α+2β)=sinαcos2β+cosαsin2β(i)\sin (\alpha + 2\beta ) = \sin \alpha \cos 2\beta + \cos \alpha \sin 2\beta ----- (i)
Also we have the relations,
cos2A=12sin2A\cos 2A = 1 - 2{\sin ^2}A
sin2A=2sinAcosA\sin 2A = 2\sin A\cos A
This gives, cos2β=12sin2β\cos 2\beta = 1 - 2{\sin ^2}\beta and sin2β=2sinβcosβ\sin 2\beta = 2\sin \beta \cos \beta
Substituting these, we have from equation (i)(i),
\Rightarrow sin(α+2β)=sinα(12sin2β)+cosα(2sinβcosβ)\sin (\alpha + 2\beta ) = \sin \alpha (1 - 2{\sin ^2}\beta ) + \cos \alpha (2\sin \beta \cos \beta )
Expanding the above equation we get,
\Rightarrow sin(α+2β)=sinα2sinαsin2β+2cosαsinβcosβ\sin (\alpha + 2\beta ) = \sin \alpha - 2\sin \alpha {\sin ^2}\beta + 2\cos \alpha \sin \beta \cos \beta
Taking sinβ\sin \beta common from right hand side we get,
\Rightarrow sin(α+2β)=sinα+2sinβ(cosαcosβsinαsinβ)(ii)\sin (\alpha + 2\beta ) = \sin \alpha + 2\sin \beta (\cos \alpha \cos \beta - \sin \alpha \sin \beta ) ------ (ii)
Now, cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B
Using this we can write equation (ii)(ii) as,
\Rightarrow sin(α+2β)=sinα+2sinβcos(α+β)\sin (\alpha + 2\beta ) = \sin \alpha + 2\sin \beta \cos (\alpha + \beta )
But in the question it is given that,
cos(α+β)=0\cos (\alpha + \beta ) = 0
Substituting this we have,
\Rightarrow sin(α+2β)=sinα+2sinβ×0\sin (\alpha + 2\beta ) = \sin \alpha + 2\sin \beta \times 0
sin(α+2β)=sinα+0\Rightarrow \sin (\alpha + 2\beta ) = \sin \alpha + 0
So we have,
sin(α+2β)=sinα\sin (\alpha + 2\beta ) = \sin \alpha

\therefore The answer is sinα\sin \alpha .

Note: We have other trigonometric identities.
For some angle AA,
sin2A=2tanA1+tan2A\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}
cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1
cos2A=cos2Asin2A\cos 2A = {\cos ^2}A - {\sin ^2}A
Like these, we have other identities for sin,cos,tan,cosec,sec\sin ,\cos ,\tan ,{\text{cosec,sec}} and cot\cot .