Question
Question: If \(\cos \alpha + 2\cos \beta + 3\cos \lambda = 0,{\text{ }}\sin \alpha + 2\sin \beta + 3\sin \lamb...
If cosα+2cosβ+3cosλ=0, sinα+2sinβ+3sinλ=0 and α+β+λ=π, then
sin3α+8sin3β+27sin3λ= a. - 18 b. 0 c. 3 d. 9
Solution
Hint: Assume z1=cosα+isinα, z2=cosβ+isinβ, z3=cosλ+isinλ. Manipulate these terms to obtain the required expression, also use Euler’s Theorem that is write complex numbers in exponential terms.
Complete step-by-step answer:
Let,
z1=cosα+isinα, z2=cosβ+isinβ, z3=cosλ+isinλ z1=cosα+isinα.........(1) 2z2=2(cosβ+isinβ)............(2) 3z3=3(cosλ+isinλ)...............(3)
Where z is a complex number
Add these three equations
z1+2z2+3z3=cosα+isinα+2cosβ+2isinβ+3cosλ+3isinλ =(cosα+2cosβ+3cosλ)+i(sinα+2sinβ+3sinλ)
Now it is given that cosα+2cosβ+3cosλ=0, sinα+2sinβ+3sinλ=0
⇒z1+2z2+3z3=0+i0=0
Now according to Euler’s Theorem cosα+isinα=eiα
⇒z1=eiα ⇒z2=eiβ ⇒z3=eiλ
Now according to known fact if a+b+c=0, then a3+b3+c3=3abc
⇒(z1)3+(2z2)3+(3z3)3=3(z1)(2z2)(3z3) ⇒e3iα+8e3iβ+27e3iλ=18eiαeiβeiλ ⇒cos3α+isin3α+8cos3β+8isin3β+27cos3λ+27isin3λ=18eiαeiβeiλ ⇒(cos3α+8cos3β+27cos3λ)+i(sin3α+8sin3β+27sin3λ)=18ei(α+β+λ)
Now it is given that α+β+λ=π
⇒(cos3α+8cos3β+27cos3λ)+i(sin3α+8sin3β+27sin3λ)=18ei(α+β+λ)=18eiπ ⇒(cos3α+8cos3β+27cos3λ)+i(sin3α+8sin3β+27sin3λ)=18(cosπ+isinπ)
Now, as we know cosπ=−1, sinπ=0
⇒(cos3α+8cos3β+27cos3λ)+i(sin3α+8sin3β+27sin3λ)=18(cosπ+isinπ)=18(−1+0i)=−18Now comparing real and imaginary terms
cos3α+8cos3β+27cos3λ=−18, sin3α+8sin3β+27sin3λ=0
So, the value of sin3α+8sin3β+27sin3λ=0
Hence, option b is correct.
Note: In such types of question always assume a complex number in the form of(z=cosθ+isinθ), then remember the standard known fact which is if a+b+c=0, then a3+b3+c3=3abc, then simplify according to given conditions then compare real and imaginary parts we will get the required answer.