Question
Question: If \(\cos A = m\cos B,\) then...
If cosA=mcosB, then
A
cot2A+B=m−1m+1tan2B−A
B
tan2A+B=m−1m+1cot2B−A
C
cot2A+B=m−1m+1tan2A−B
D
None of these
Answer
cot2A+B=m−1m+1tan2B−A
Explanation
Solution
Given that cosA=mcosB⇒1m=cosBcosA
⇒m−1m+1=cosA−cosBcosA+cosB=2sin(2A+B)sin(2B−A)2cos(2A+B)cos(2B−A)
=cot(2A+B)cot(2B−A)
Hence, cot(2A+B)=m−1m+1tan2B−A.