Solveeit Logo

Question

Question: If \(\cos A = m\cos B,\) then...

If cosA=mcosB,\cos A = m\cos B, then

A

cotA+B2=m+1m1tanBA2\cot\frac{A + B}{2} = \frac{m + 1}{m - 1}\tan\frac{B - A}{2}

B

tanA+B2=m+1m1cotBA2\tan\frac{A + B}{2} = \frac{m + 1}{m - 1}\cot\frac{B - A}{2}

C

cotA+B2=m+1m1tanAB2\cot\frac{A + B}{2} = \frac{m + 1}{m - 1}\tan\frac{A - B}{2}

D

None of these

Answer

cotA+B2=m+1m1tanBA2\cot\frac{A + B}{2} = \frac{m + 1}{m - 1}\tan\frac{B - A}{2}

Explanation

Solution

Given that cosA=mcosBm1=cosAcosB\cos A = m\cos B \Rightarrow \frac{m}{1} = \frac{\cos A}{\cos B}

m+1m1=cosA+cosBcosAcosB=2cos(A+B2)cos(BA2)2sin(A+B2)sin(BA2)\Rightarrow \frac{m + 1}{m - 1} = \frac{\cos A + \cos B}{\cos A - \cos B} = \frac{2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{B - A}{2} \right)}{2\sin\left( \frac{A + B}{2} \right)\sin\left( \frac{B - A}{2} \right)}

=cot(A+B2)cot(BA2)= \cot\left( \frac{A + B}{2} \right)\cot\left( \frac{B - A}{2} \right)

Hence, cot(A+B2)=m+1m1tanBA2\cot\left( \frac{A + B}{2} \right) = \frac{m + 1}{m - 1}\tan\frac{B - A}{2}.