Solveeit Logo

Question

Question: If \[\cos A=\dfrac{\sqrt{3}}{2}\], then \(\tan 3A=\)...

If cosA=32\cos A=\dfrac{\sqrt{3}}{2}, then tan3A=\tan 3A=

Explanation

Solution

Now we are given that cosA=32\cos A=\dfrac{\sqrt{3}}{2} . Now we will use the identity sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x to find the value of sin2A{{\sin }^{2}}A . Hence taking square root in the equation obtained we will find the value of sinA\sin A . Now we know that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} . Hence using this we will find the value of tanA\tan A . Now we will substitute the value of tanA\tan A in the formula tan3A=3tanAtan3A13tan2A\tan 3A=\dfrac{3\tan A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A} and hence find the value of tan3A\tan 3A .

Complete step by step solution:
Now we are given that the value of cosA\cos A is 32\dfrac{\sqrt{3}}{2} .
Now first we will find the value of sinA\sin A .
Consider the equation cosA=32\cos A=\dfrac{\sqrt{3}}{2}
Now squaring the above equation we get, cos2A=34{{\cos }^{2}}A=\dfrac{3}{4} .
Now let us multiply the above equation by – 1 Hence we get,
cos2A=34\Rightarrow -{{\cos }^{2}}A=\dfrac{3}{4}
Now Adding 1 to both sides of the equation we get,
1cos2A=134\Rightarrow 1-{{\cos }^{2}}A=1-\dfrac{3}{4}
Now we know that sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x Hence using this we get,
sin2x=434 sin2x=14 \begin{aligned} & \Rightarrow {{\sin }^{2}}x=\dfrac{4-3}{4} \\\ & \Rightarrow {{\sin }^{2}}x=\dfrac{1}{4} \\\ \end{aligned}
Now taking square root on both sides we get,
sinA=12\Rightarrow \sin A=\dfrac{1}{2}
Now we have the value of sinA\sin A and cosA\cos A . Hence we can easily find the value of tanA\tan A.
Hence we get,
tanA=sinAcosA=1232=13\Rightarrow \tan A=\dfrac{\sin A}{\cos A}=\dfrac{\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}=\dfrac{1}{\sqrt{3}}
Hence we have tanA=13\tan A=\dfrac{1}{\sqrt{3}} .
Now consider tan3A\tan 3A .
We know by compound angles formula that tan3θ=3tanθtan3θ13tan2θ\tan 3\theta =\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }
Now substituting the value of tanA\tan A in the formula we get,
tan3A=3×13(13)313(13)2\Rightarrow \tan 3A=\dfrac{3\times \dfrac{1}{\sqrt{3}}-{{\left( \dfrac{1}{\sqrt{3}} \right)}^{3}}}{1-3{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}
Now on simplifying we can see that the denominator is coming to be 0.

Hence the value of tan3A\tan 3A is nothing but \infty

Note: Now note that we can directly solve the given problem by finding the value of A. Here we are given that cosA=32\cos A=\dfrac{\sqrt{3}}{2} . taking the inverse of cos\cos on both side we get A=π6A=\dfrac{\pi }{6} . Now since A=π6A=\dfrac{\pi }{6} we can say that the value of 3A=π23A=\dfrac{\pi }{2} . Now we know that tan(π2)=\tan \left( \dfrac{\pi }{2} \right)=\infty