Solveeit Logo

Question

Question: If \[\cos A = \cos B = - \dfrac{1}{2}\] and A does not lie in second quadrant and B does not lie in ...

If cosA=cosB=12\cos A = \cos B = - \dfrac{1}{2} and A does not lie in second quadrant and B does not lie in the third quadrant, then find the value of 4sinB3tanAtanB+sinA\dfrac{{4\sin B - 3\tan A}}{{\tan B + \sin A}}.

Explanation

Solution

We need to remember the concept of trigonometric transformation formulae and trigonometric ratios and where the signs of cosine and sine will be positive and negative. First find the values of A and B with respect to given conditions and then substitute those values in the required equation.

Complete Step by Step Solution:
The objective of the problem is to find the value of 4sinB3tanAtanB+sinA\dfrac{{4\sin B - 3\tan A}}{{\tan B + \sin A}}.
Let us consider 4sinB3tanAtanB+sinA.......(1)\dfrac{{4\sin B - 3\tan A}}{{\tan B + \sin A}}.......\left( 1 \right)
Given that cosA=cosB=12\cos A = \cos B = - \dfrac{1}{2}
Let us take cosA=12\cos A = - \dfrac{1}{2}
We know that the value of cos60\cos {60^\circ } is equal to half.
Now we get cosA=cos60\cos A = - \cos 60
It is given that A does not lie in the second quadrant so we write cos60\cos {60^\circ } as cos(180+60)\cos \left( {{{180}^\circ } + {{60}^\circ }} \right)
We get , cosA=cos(180+60)\cos A = \cos \left( {{{180}^\circ } + {{60}^\circ }} \right)
cosA=cos(240)\Rightarrow \cos A = \cos \left( {{{240}^\circ }} \right)
Therefore , A=240A = {240^\circ }
Now let us take cosB=12\cos B = - \dfrac{1}{2}
We know that the value of cos60\cos {60^\circ } is equal to half.
Now we get cosB=cos60\cos B = - \cos 60
It is given that B does not lie in the third quadrant so we write cos60\cos {60^\circ } as cos(18060)\cos \left( {{{180}^\circ } - {{60}^\circ }} \right)
We get , cosB=cos(18060)\cos B = \cos \left( {{{180}^\circ } - {{60}^\circ }} \right)
cosB=cos(120)\Rightarrow \cos B = \cos \left( {{{120}^\circ }} \right)
Therefore , B=120B = {120^\circ } .
Now substitute the values of A and B in equation 1 we get
4sinB3tanAtanB+sinA=4sin1203tan240tan120+sin240\dfrac{{4\sin B - 3\tan A}}{{\tan B + \sin A}} = \dfrac{{4\sin {{120}^\circ } - 3\tan {{240}^\circ }}}{{\tan {{120}^\circ } + \sin {{240}^\circ }}}
We write it as
4sin(18060)3tan(180+60)tan(18060)+sin(180+60)\Rightarrow \dfrac{{4\sin \left( {{{180}^\circ } - {{60}^\circ }} \right) - 3\tan \left( {{{180}^\circ } + {{60}^\circ }} \right)}}{{\tan \left( {{{180}^\circ } - {{60}^\circ }} \right) + \sin \left( {{{180}^\circ } + {{60}^\circ }} \right)}}
On solving above we get
4sin(60)3tan(60)tan(60)+sin(60)\Rightarrow \dfrac{{4\sin \left( {{{60}^\circ }} \right) - 3\tan \left( {{{60}^\circ }} \right)}}{{\tan \left( {{{60}^\circ }} \right) + \sin \left( {{{60}^\circ }} \right)}}
Substitute the values of sin60=32,tan60=3\sin {60^\circ } = \dfrac{{\sqrt 3 }}{2},\tan {60^\circ } = \sqrt 3 we get
4×323×33+32\Rightarrow \dfrac{{4 \times \dfrac{{\sqrt 3 }}{2} - 3 \times \sqrt 3 }}{{\sqrt 3 + \dfrac{{\sqrt 3 }}{2}}}
By taking LCM as two in denominator we get
233323+32\Rightarrow \dfrac{{2\sqrt 3 - 3\sqrt 3 }}{{\dfrac{{2\sqrt 3 + \sqrt 3 }}{2}}}
On solving above equation we get

\Rightarrow \dfrac{{ - \sqrt 3 }}{{\dfrac{{3\sqrt 3 }}{2}}} \\\ \Rightarrow - \dfrac{{2\sqrt 3 }}{{3\sqrt 3 }} \\\ \Rightarrow - \dfrac{2}{3} \\\ \end{gathered} $$ **Thus the value of $\dfrac{{4\sin B - 3\tan A}}{{\tan B + \sin A}}$ is $$ - \dfrac{2}{3}$$** **Note:** The sine trigonometric function is positive in first and second quadrants in the coordinate axis and in the remaining it is negative only. And for the tan trigonometric function it is positive in the first and third quadrants of the coordinate system. For this type of problem we should remember the trigonometric ratios and formulae. And one should be careful about the algebraic signs and trigonometric signs.