Solveeit Logo

Question

Question: If cos A + cos B+ cos C = \(\sqrt{2}\), then \(\frac{r}{R}\) (ratio of inradius (r) and R is circum...

If cos A + cos B+ cos C = 2\sqrt{2}, then rR\frac{r}{R} (ratio of inradius (r)

and R is circumradius) is a root of the equation –

A

(rR)2\left( \frac{r}{R} \right)^{2} – 2 rR\frac{r}{R}+ 12\frac{1}{2}= 0

B

(rR)2\left( \frac{r}{R} \right)^{2} – 2 rR\frac{r}{R}– 1 = 0

C

(rR)2\left( \frac{r}{R} \right)^{2} + 2 rR\frac{r}{R}– 1 = 0

D

(rR)2\left( \frac{r}{R} \right)^{2} + 3 rR\frac{r}{R}– 1 = 0

Answer

(rR)2\left( \frac{r}{R} \right)^{2} + 2 rR\frac{r}{R}– 1 = 0

Explanation

Solution

cos A + cos B + cos C = 2\sqrt{2}

⇒ 1 + 4 sinA/2 sin B/2 sinC/2 = 2\sqrt{2}

⇒ 1 + rR\frac{r}{R} = 2\sqrt{2}rR\frac{r}{R} = 2\sqrt{2} – 1