Solveeit Logo

Question

Question: If \(\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0\), then the possible values of \(x = \frac{3...

If cos6θ+cos4θ+cos2θ+1=0\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0, then the possible values of x=37π24x = \frac{37\pi}{24} are.

A

2cos23θ+2cos3θ.cosθ=02\cos^{2}3\theta + 2\cos 3\theta.\cos\theta = 0

B

\Rightarrow

C

4cos3θcos2θcosθ=04\cos 3\theta\cos 2\theta\cos\theta = 0

D

\Rightarrow

Answer

\Rightarrow

Explanation

Solution

(81)sin2π/6+(81)cos2π/6=30(81)^{\sin^{2}\pi/6} + (81)^{\cos^{2}\pi/6} = 30

\Rightarrow tanθ=3=tanπ3θ=nπ+π3\tan\theta = \sqrt{3} = \tan\frac{\pi}{3} \Rightarrow \theta = n\pi + \frac{\pi}{3}

i.e., π<θ<0- \pi < \theta < 0

and Putn=1\text{Put}n = - 1

Hence value of θ=π+π3=2π3or 4π6\theta = - \pi + \frac{\pi}{3} = \frac{- 2\pi}{3}\text{or }\frac{- 4\pi}{6} between 0 and tanθ+13=0\tan\theta + \frac{1}{\sqrt{3}} = 0 are

θ\theta

i.e., 00{^\circ}.