Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If cos3xcos2xcosx=14\cos \, 3x \, \cos \, 2x \, \cos \, x = \frac{1}{4} and 0<x<π40 < x < \frac{\pi}{4}, then the value of xx is

A

π6\frac{\pi}{6}

B

π5\frac{\pi}{5}

C

π8\frac{\pi}{8}

D

π7\frac{\pi}{7}

Answer

π8\frac{\pi}{8}

Explanation

Solution

Given, cos3xcos2xcosx=14\cos\,3x\, \cos\,2x\, \cos\, x=\frac{1}{4}
2(2cosxcos3x)cos2x=1\Rightarrow 2\left(2\cos\, x\, \cos\,3x\right)\, \cos\, 2x=1
2(cos4x+cos2x)cos2x=1\Rightarrow 2\left(\cos\,4x + \cos\, 2x\right)\, \cos\, 2x=1
[2cosAcosBcosB=cos(A+B)+cos(AB)]\left[\because 2\cos\, A\, \cos\, B-\cos\, B=\cos\left(A+B\right) + \cos\left(A-B\right)\right]
2(2cos22x1+cos2x)cos2x=1\Rightarrow 2\left(2\cos^{2}\, 2x-1 + \cos\, 2x\right)\, \cos\, 2x=1
4cos32x2cos2x+2cos22x1=0\Rightarrow 4\, \cos^{3}\, 2x-2\cos\, 2x+2\cos^{2}\, 2x-1=0
2cos2x(2cos22x1+1(2cos2x1))=0\Rightarrow 2\cos\, 2x\left(2\cos^{2}\, 2x-1+1\left(2\cos^{2}\,x-1\right)\right)=0
(2cos22x1)(2cos2x+1)=0\Rightarrow \left(2\cos^{2}\, 2x-1\right)\left(2\cos\,2x+1\right)=0
cos4x(2cos2x+1)=0\Rightarrow \cos\,4x(2\cos\,2x + 1) = 0
cos4x=0\Rightarrow \cos\,4x=0 or 2cos2x+1=02\cos\,2x + 1=0
cos4x=cosπ2\Rightarrow \cos\,4x =\cos \frac{\pi}{2} or cos2x=12\cos\,2x=\frac{-1}{2}
4x=π2\Rightarrow 4x=\frac{\pi}{2} or cos2x=cos2π3\cos\,2x=\cos \frac{2\pi}{3}
x=π8\Rightarrow x=\frac{\pi}{8} or 2x=2π32x=\frac{2\pi}{3}
x=π8\Rightarrow x=\frac{\pi}{8} or x=π3x=\frac{\pi}{3}
Since, x(0,π4)x \in\left(0, \frac{\pi}{4}\right)
x=π8\therefore x=\frac{\pi}{8} is the required value.