Question
Mathematics Question on Trigonometric Functions
If cos3xcos2xcosx=41 and 0<x<4π, then the value of x is
A
6π
B
5π
C
8π
D
7π
Answer
8π
Explanation
Solution
Given, cos3xcos2xcosx=41
⇒2(2cosxcos3x)cos2x=1
⇒2(cos4x+cos2x)cos2x=1
[∵2cosAcosB−cosB=cos(A+B)+cos(A−B)]
⇒2(2cos22x−1+cos2x)cos2x=1
⇒4cos32x−2cos2x+2cos22x−1=0
⇒2cos2x(2cos22x−1+1(2cos2x−1))=0
⇒(2cos22x−1)(2cos2x+1)=0
⇒cos4x(2cos2x+1)=0
⇒cos4x=0 or 2cos2x+1=0
⇒cos4x=cos2π or cos2x=2−1
⇒4x=2π or cos2x=cos32π
⇒x=8π or 2x=32π
⇒x=8π or x=3π
Since, x∈(0,4π)
∴x=8π is the required value.