Solveeit Logo

Question

Question: If \(\cos 3x = - 1\), where\(0^\circ \leqslant x \leqslant 360^\circ \), then find\(x\) (A)\(60^\c...

If cos3x=1\cos 3x = - 1, where0x3600^\circ \leqslant x \leqslant 360^\circ , then findxx
(A)60,180,30060^\circ ,180^\circ ,300^\circ
(B)180180^\circ
(C)60,18060^\circ ,180^\circ
(D)180,300180^\circ ,300^\circ

Explanation

Solution

Simplify this equation using the identity cosAcosB=2sin(A+B)2sin(AB)2\cos A - \cos B = - 2\sin \dfrac{{(A + B)}}{2}\sin \dfrac{{(A - B)}}{2}. Also, use the fact that sinθ=0\sin \theta = 0only when θ=nπ\theta = n\pi where n is any integer to get x=(2n1)π3x = \dfrac{{(2n - 1)\pi }}{3} orx=(2n+1)π3x = \dfrac{{(2n + 1)\pi }}{3}. Find x such that 0x3600^\circ \leqslant x \leqslant 360^\circ .

Complete step-by-step solution:
We have a trigonometric equation cos3x=1\cos 3x = - 1 such that 0x3600^\circ \leqslant x \leqslant 360^\circ .
We need to solve this equation to find the values of x. That is, we will find those x for which the given equation is satisfied.
We know that 1cosθ1 - 1 \leqslant \cos \theta \leqslant 1 for any θ\theta and cos180=1\cos 180^\circ = - 1…..(1)
Therefore, we can compare the given equation cos3x=1\cos 3x = - 1 with this fact in (1).
Thus, we get cos3x=cos180\cos 3x = \cos 180^\circ .
cos3xcos180=0\Rightarrow \cos 3x - \cos 180^\circ = 0
Here, we will use the identity cosAcosB=2sin(A+B)2sin(AB)2\cos A - \cos B = - 2\sin \dfrac{{(A + B)}}{2}\sin \dfrac{{(A - B)}}{2}.
In our case,A=3xA = 3xandB=180B = 180^\circ .
Therefore, applying the identity we get the following equation:
cos3xcos180=2sin(3x+180)2sin(3x180)2\cos 3x - \cos 180^\circ = - 2\sin \dfrac{{(3x + 180^\circ )}}{2}\sin \dfrac{{(3x - 180^\circ )}}{2}
This would imply that 2sin(3x+180)2sin(3x180)2=0 - 2\sin \dfrac{{(3x + 180^\circ )}}{2}\sin \dfrac{{(3x - 180^\circ )}}{2} = 0
Divide by -2 on both the sides.
Then we get
sin(3x+180)2sin(3x180)2=0\sin \dfrac{{(3x + 180^\circ )}}{2}\sin \dfrac{{(3x - 180^\circ )}}{2} = 0……(A)
This is only possible when either sin(3x+180)2=0\sin \dfrac{{(3x + 180^\circ )}}{2} = 0 or sin(3x180)2=0\sin \dfrac{{(3x - 180^\circ )}}{2} = 0
We know that sinθ=0\sin \theta = 0 only when θ=nπ\theta = n\pi where n is any integer.
Therefore, we have either 3x+1802=nπ\dfrac{{3x + 180^\circ }}{2} = n\pi or 3x1802=nπ\dfrac{{3x - 180^\circ }}{2} = n\pi
Since the RHS is given in terms of radians, we will write 180180^\circ as π\pi .
So, we have
3x+π2=nπ\dfrac{{3x + \pi }}{2} = n\pi or 3xπ2=nπ\dfrac{{3x - \pi }}{2} = n\pi
\Rightarrow 3x+π=2nπ3x + \pi = 2n\pi or 3xπ=2nπ3x - \pi = 2n\pi
\Rightarrow 3x=2nππ=(2n1)π3x = 2n\pi - \pi = (2n - 1)\pi or 3x=2nπ+π=(2n+1)π3x = 2n\pi + \pi = (2n + 1)\pi
Now divide by 2 throughout for both the equations. We get:
x=(2n1)π3x = \dfrac{{(2n - 1)\pi }}{3}orx=(2n+1)π3x = \dfrac{{(2n + 1)\pi }}{3}……(I)
So this implies that cos3xcos180=0\cos 3x - \cos 180^\circ = 0 if and only if x=(2n1)π3x = \dfrac{{(2n - 1)\pi }}{3} or x=(2n+1)π3x = \dfrac{{(2n + 1)\pi }}{3} for any integer n.
But we are given that our x should be such that 0x3600^\circ \leqslant x \leqslant 360^\circ .
That is x should be such that 0x2π0 \leqslant x \leqslant 2\pi
Now,
0x2π 0(2n1)π32π 0(2n1)π6π 0(2n1)6 12n7 12n72......(2)  0 \leqslant x \leqslant 2\pi \\\ \Rightarrow 0 \leqslant \dfrac{{(2n - 1)\pi }}{3} \leqslant 2\pi \\\ \Rightarrow 0 \leqslant (2n - 1)\pi \leqslant 6\pi \\\ \Rightarrow 0 \leqslant (2n - 1) \leqslant 6 \\\ \Rightarrow 1 \leqslant 2n \leqslant 7 \\\ \Rightarrow \dfrac{1}{2} \leqslant n \leqslant \dfrac{7}{2}......(2) \\\
Similarly, forx=(2n+1)π3x = \dfrac{{(2n + 1)\pi }}{3}, we have
0x2π 0(2n+1)π32π 0(2n+1)π6π 0(2n+1)6 12n5 12n52.....(3)  0 \leqslant x \leqslant 2\pi \\\ \Rightarrow 0 \leqslant \dfrac{{(2n + 1)\pi }}{3} \leqslant 2\pi \\\ \Rightarrow 0 \leqslant (2n + 1)\pi \leqslant 6\pi \\\ \Rightarrow 0 \leqslant (2n + 1) \leqslant 6 \\\ \Rightarrow - 1 \leqslant 2n \leqslant 5 \\\ \Rightarrow \dfrac{{ - 1}}{2} \leqslant n \leqslant \dfrac{5}{2}.....(3) \\\
The integer values of n which satisfy (2) or (3) are 0, 1, 2, and 3.
Put these values in equation (I)
For n = 0, we have x=π3x = \dfrac{\pi }{3} or x=πx = \pi
For n = 1, we havex=π3x = \dfrac{\pi }{3} or x=πx = \pi
For n = 2, we have x=πx = \pi or x=5π3x = \dfrac{{5\pi }}{3}
For n = 3, we have x=5π3x = \dfrac{{5\pi }}{3} or x=7π3x = \dfrac{{7\pi }}{3}
Note thatx=7π3x=2π+π3x = \dfrac{{7\pi }}{3} \Rightarrow x = 2\pi + \dfrac{\pi }{3}.
Therefore, the condition of 0x3600^\circ \leqslant x \leqslant 360^\circ is not satisfied here.
Thus, the values for whichcos3x=1\cos 3x = - 1 such that 0x3600^\circ \leqslant x \leqslant 360^\circ arex=π3x = \dfrac{\pi }{3},x=πx = \pi , and x=5π3x = \dfrac{{5\pi }}{3}.
Converting the radians into degrees, we get x=60x = 60^\circ ,x=180x = 180^\circ ,andx=300x = 300^\circ .

Hence the correct answer is option ‘C’ 60,180,30060^\circ ,180^\circ ,300^\circ

Note: Use cos180=1\cos 180^\circ = - 1to get the equationcos3xcos180=0\cos 3x - \cos 180^\circ = 0 is very essential and is the key step for solving the question. The product of two real numbers, a and b, is 0 if and only if either a = 0 or b = 0. This is an important fact that we make use of in solving this question for equation (A).