Solveeit Logo

Question

Question: If \(\cos 2B = \frac{\cos(A + C)}{\cos(A - C)}\), then \(\tan A,\mspace{6mu}\tan B,\mspace{6mu}\tan ...

If cos2B=cos(A+C)cos(AC)\cos 2B = \frac{\cos(A + C)}{\cos(A - C)}, then tanA,6mutanB,6mutanC\tan A,\mspace{6mu}\tan B,\mspace{6mu}\tan C are in

A

A.P.

B

G.P.

C

H.P.

D

None of these

Answer

G.P.

Explanation

Solution

cos2B=cos(A+C)cos(AC)=cosAcosCsinAsinCcosAcosC+sinAsinC\cos 2B = \frac{\cos(A + C)}{\cos(A - C)} = \frac{\cos A\cos C - \sin A\sin C}{\cos A\cos C + \sin A\sin C}

1tan2B1+tan2B=1tanAtanC1+tanAtanC\frac{1 - \tan^{2}B}{1 + \tan^{2}B} = \frac{1 - \tan A\tan C}{1 + \tan A\tan C}

1+tan2BtanAtanCtanAtanCtan2B1 + \tan^{2}B - \tan A\tan C - \tan A\tan C\tan^{2}B

=1tan2B+tanAtanCtanAtanCtan2B= 1 - \tan^{2}B + \tan A\tan C - \tan A\tan C\tan^{2}B

2tan2B=2tanAtanCtan2B=tanAtanC2\tan^{2}B = 2\tan A\tan C \Rightarrow \tan^{2}B = \tan A\tan C

Hence, tan A, tan B and tan\tanC will be in G.P.