Question
Question: If \(\cos 2B = \frac{\cos(A + C)}{\cos(A - C)}\), then \(\tan A,\mspace{6mu}\tan B,\mspace{6mu}\tan ...
If cos2B=cos(A−C)cos(A+C), then tanA,6mutanB,6mutanC are in
A
A.P.
B
G.P.
C
H.P.
D
None of these
Answer
G.P.
Explanation
Solution
cos2B=cos(A−C)cos(A+C)=cosAcosC+sinAsinCcosAcosC−sinAsinC
⇒ 1+tan2B1−tan2B=1+tanAtanC1−tanAtanC
⇒ 1+tan2B−tanAtanC−tanAtanCtan2B
=1−tan2B+tanAtanC−tanAtanCtan2B
⇒ 2tan2B=2tanAtanC⇒tan2B=tanAtanC
Hence, tan A, tan B and tanC will be in G.P.