Solveeit Logo

Question

Question: If cos α = 2/3, then range of the values of φ for which the point φ on the ellipse x<sup>2</sup> + 4...

If cos α = 2/3, then range of the values of φ for which the point φ on the ellipse x2 + 4y2 = 4 falls inside the circle x2 + y2 + 4x + 3 = 0 is:

A

(-α, α)

B

(0, α)

C

(α, π)

D

(π - α, π + α)

Answer

(π - α, π + α)

Explanation

Solution

The point φ on the ellipse x24+y2=1\frac{x^{2}}{4} + y^{2} = 1 will be

(2 cosφ, sinφ). It lies inside the circle

x2 + y2 + 4x + 3 = 0, if

4cos2 φ + sin2 φ + 8 cosφ + 3 < 0

⇒ 3cos2φ + 8 cosφ + 4 < 0

⇒ (cosφ + 2) (3 cosφ + 2) < 0

⇒ -2 < cosφ < - 2/3

⇒ - 1≤ cosφ < cos (π - α)

∴ π - α < φ < π + α is most appropriate.