Question
Question: If cos α = 2/3, then range of the values of φ for which the point φ on the ellipse x<sup>2</sup> + 4...
If cos α = 2/3, then range of the values of φ for which the point φ on the ellipse x2 + 4y2 = 4 falls inside the circle x2 + y2 + 4x + 3 = 0 is:
A
(-α, α)
B
(0, α)
C
(α, π)
D
(π - α, π + α)
Answer
(π - α, π + α)
Explanation
Solution
The point φ on the ellipse 4x2+y2=1 will be
(2 cosφ, sinφ). It lies inside the circle
x2 + y2 + 4x + 3 = 0, if
4cos2 φ + sin2 φ + 8 cosφ + 3 < 0
⇒ 3cos2φ + 8 cosφ + 4 < 0
⇒ (cosφ + 2) (3 cosφ + 2) < 0
⇒ -2 < cosφ < - 2/3
⇒ - 1≤ cosφ < cos (π - α)
∴ π - α < φ < π + α is most appropriate.