Solveeit Logo

Question

Question: If \(\cos {20^ \circ } - \sin {20^ \circ } = p\), then \(\cos {40^ \circ }\) is equal to A. \[{p^2...

If cos20sin20=p\cos {20^ \circ } - \sin {20^ \circ } = p, then cos40\cos {40^ \circ } is equal to
A. p2(2p2){p^2}\sqrt {\left( {2 - {p^2}} \right)}
B. p(2p2)p\sqrt {\left( {2 - {p^2}} \right)}
C. p+(2p2)p + \sqrt {\left( {2 - {p^2}} \right)}
D. p(2p2)p - \sqrt {\left( {2 - {p^2}} \right)}

Explanation

Solution

In order to find the value of cos40\cos {40^ \circ }, square both the sides of the equation given cos20sin20=p\cos {20^ \circ } - \sin {20^ \circ } = p, then using the basic formulas of trigonometry and, multiples and sub- multiple angles, substitute the values, simplify it and get the results.

Formula used:
(ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1
cosθ=1(sinθ)2\cos \theta = \sqrt {1 - {{\left( {\sin \theta } \right)}^2}}
x2=x\sqrt {{x^2}} = x
Complete step-by-step solution:
We are given the equation cos20sin20=p\cos {20^ \circ } - \sin {20^ \circ } = p.
We can start with modifying the equations to find the value of cos40\cos {40^ \circ }.
Starting with squaring both the sides of the equation cos20sin20=p\cos {20^ \circ } - \sin {20^ \circ } = p, we get:
(cos20sin20)2=p2{\left( {\cos {{20}^ \circ } - \sin {{20}^ \circ }} \right)^2} = {p^2}
From the basic formulas, we know that:
(ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
Comparing and substituting the expanded value in (cos20sin20)2{\left( {\cos {{20}^ \circ } - \sin {{20}^ \circ }} \right)^2}, we get:
(cos20)2+(sin20)22cos20sin20=p2{\left( {\cos {{20}^ \circ }} \right)^2} + {\left( {\sin {{20}^ \circ }} \right)^2} - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}
Pairing the first two operands in one parenthesis, we get:
((cos20)2+(sin20)2)2cos20sin20=p2\left( {{{\left( {\cos {{20}^ \circ }} \right)}^2} + {{\left( {\sin {{20}^ \circ }} \right)}^2}} \right) - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2} ……(1)
From trigonometric formulas, we know that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1. So, comparing this equation with (cos20)2+(sin20)2{\left( {\cos {{20}^ \circ }} \right)^2} + {\left( {\sin {{20}^ \circ }} \right)^2} we can write (cos20)2+(sin20)2=1{\left( {\cos {{20}^ \circ }} \right)^2} + {\left( {\sin {{20}^ \circ }} \right)^2} = 1.
Substituting this value in ((cos20)2+(sin20)2)2cos20sin20=p2\left( {{{\left( {\cos {{20}^ \circ }} \right)}^2} + {{\left( {\sin {{20}^ \circ }} \right)}^2}} \right) - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}, we get:
((cos20)2+(sin20)2)2cos20sin20=p2\left( {{{\left( {\cos {{20}^ \circ }} \right)}^2} + {{\left( {\sin {{20}^ \circ }} \right)}^2}} \right) - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}
12cos20sin20=p2\Rightarrow 1 - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2} …….(2)
From multiple and sub multiple angles, we know that:
sin2θ=2sinθcosθ\Rightarrow \sin 2\theta = 2\sin \theta \cos \theta
Comparing this value with the equation 2, we get:
θ=20\theta = {20^ \circ }
So, the value becomes:
2sin20cos20=sin(2×20)\Rightarrow 2\sin {20^ \circ }\cos {20^ \circ } = \sin \left( {2 \times {{20}^ \circ }} \right)
2sin20cos20=sin40\Rightarrow 2\sin {20^ \circ }\cos {20^ \circ } = \sin {40^ \circ }
Substituting this value with the equation 2, we get:
12cos20sin20=p2\Rightarrow 1 - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}
1sin40=p2\Rightarrow 1 - \sin {40^ \circ } = {p^2}
Subtracting both sides by 11:
1sin401=p21\Rightarrow 1 - \sin {40^ \circ } - 1 = {p^2} - 1
sin40=p21\Rightarrow - \sin {40^ \circ } = {p^2} - 1
Dividing both sides by 1 - 1:
sin401=p211\Rightarrow \dfrac{{ - \sin {{40}^ \circ }}}{{ - 1}} = \dfrac{{{p^2} - 1}}{{ - 1}}
sin40=1p2\Rightarrow \sin {40^ \circ } = 1 - {p^2} ……(3)

From Trigonometric Formulas, we know that:
cosθ=1(sinθ)2\Rightarrow \cos \theta = \sqrt {1 - {{\left( {\sin \theta } \right)}^2}}

So, substituting the value of θ=40\theta = {40^ \circ }:
cos40=1(sin40)2\Rightarrow \cos {40^ \circ } = \sqrt {1 - {{\left( {\sin {{40}^ \circ }} \right)}^2}}
Substituting the equation 3 in the above value, we get:
cos40=1(1p2)2\Rightarrow \cos {40^ \circ } = \sqrt {1 - {{\left( {1 - {p^2}} \right)}^2}}
Expanding the brackets (1p2)2{\left( {1 - {p^2}} \right)^2} using the formula (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, we get:
cos40=1(12+(p2)22p2)\Rightarrow \cos {40^ \circ } = \sqrt {1 - \left( {{1^2} + {{\left( {{p^2}} \right)}^2} - 2{p^2}} \right)}
cos40=11p4+2p2\Rightarrow \cos {40^ \circ } = \sqrt {1 - 1 - {p^4} + 2{p^2}}
cos40=2p2p4\Rightarrow \cos {40^ \circ } = \sqrt {2{p^2} - {p^4}}
Taking p2{p^2} common inside the bracket, and we get:
cos40=p2(2p2)\Rightarrow \cos {40^ \circ } = \sqrt {{p^2}\left( {2 - {p^2}} \right)}
Since, we know that x2=x\sqrt {{x^2}} = x, using this in the above equation and taking p2{p^2} outside the bracket, we get:
cos40=p(2p2)\Rightarrow \cos {40^ \circ } = p\sqrt {\left( {2 - {p^2}} \right)}
Hence, the value of cos40=p(2p2)\cos {40^ \circ } = p\sqrt {\left( {2 - {p^2}} \right)} .
Therefore, Option 2 is correct.

Note: Since, we wrote that cosθ=1(sinθ)2\cos \theta = \sqrt {1 - {{\left( {\sin \theta } \right)}^2}} which can be proved using the formula cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1. In which subtract both the sides by sin2θ{\sin ^2}\theta , and take square root on both the sides and we first obtain the equation, cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta and then cosθ=1sin2θ\cos \theta = \sqrt {1 - {{\sin }^2}\theta } .