Question
Question: If \(\cos {20^ \circ } - \sin {20^ \circ } = p\), then \(\cos {40^ \circ }\) is equal to A. \[{p^2...
If cos20∘−sin20∘=p, then cos40∘ is equal to
A. p2(2−p2)
B. p(2−p2)
C. p+(2−p2)
D. p−(2−p2)
Solution
In order to find the value of cos40∘, square both the sides of the equation given cos20∘−sin20∘=p, then using the basic formulas of trigonometry and, multiples and sub- multiple angles, substitute the values, simplify it and get the results.
Formula used:
(a−b)2=a2+b2−2ab
sin2θ=2sinθcosθ
cos2θ+sin2θ=1
cosθ=1−(sinθ)2
x2=x
Complete step-by-step solution:
We are given the equation cos20∘−sin20∘=p.
We can start with modifying the equations to find the value of cos40∘.
Starting with squaring both the sides of the equation cos20∘−sin20∘=p, we get:
(cos20∘−sin20∘)2=p2
From the basic formulas, we know that:
(a−b)2=a2+b2−2ab
Comparing and substituting the expanded value in (cos20∘−sin20∘)2, we get:
(cos20∘)2+(sin20∘)2−2cos20∘sin20∘=p2
Pairing the first two operands in one parenthesis, we get:
((cos20∘)2+(sin20∘)2)−2cos20∘sin20∘=p2 ……(1)
From trigonometric formulas, we know that cos2θ+sin2θ=1. So, comparing this equation with (cos20∘)2+(sin20∘)2 we can write (cos20∘)2+(sin20∘)2=1.
Substituting this value in ((cos20∘)2+(sin20∘)2)−2cos20∘sin20∘=p2, we get:
((cos20∘)2+(sin20∘)2)−2cos20∘sin20∘=p2
⇒1−2cos20∘sin20∘=p2 …….(2)
From multiple and sub multiple angles, we know that:
⇒sin2θ=2sinθcosθ
Comparing this value with the equation 2, we get:
θ=20∘
So, the value becomes:
⇒2sin20∘cos20∘=sin(2×20∘)
⇒2sin20∘cos20∘=sin40∘
Substituting this value with the equation 2, we get:
⇒1−2cos20∘sin20∘=p2
⇒1−sin40∘=p2
Subtracting both sides by 1:
⇒1−sin40∘−1=p2−1
⇒−sin40∘=p2−1
Dividing both sides by −1:
⇒−1−sin40∘=−1p2−1
⇒sin40∘=1−p2 ……(3)
From Trigonometric Formulas, we know that:
⇒cosθ=1−(sinθ)2
So, substituting the value of θ=40∘:
⇒cos40∘=1−(sin40∘)2
Substituting the equation 3 in the above value, we get:
⇒cos40∘=1−(1−p2)2
Expanding the brackets (1−p2)2 using the formula (a−b)2=a2+b2−2ab, we get:
⇒cos40∘=1−(12+(p2)2−2p2)
⇒cos40∘=1−1−p4+2p2
⇒cos40∘=2p2−p4
Taking p2 common inside the bracket, and we get:
⇒cos40∘=p2(2−p2)
Since, we know that x2=x, using this in the above equation and taking p2 outside the bracket, we get:
⇒cos40∘=p(2−p2)
Hence, the value of cos40∘=p(2−p2).
Therefore, Option 2 is correct.
Note: Since, we wrote that cosθ=1−(sinθ)2 which can be proved using the formula cos2θ+sin2θ=1. In which subtract both the sides by sin2θ, and take square root on both the sides and we first obtain the equation, cos2θ=1−sin2θ and then cosθ=1−sin2θ.