Solveeit Logo

Question

Question: If \[\cos 2\alpha = \dfrac{{\left( {3\cos 2\beta - 1} \right)}}{{3 - \cos 2\beta }}\] , then \[\tan ...

If cos2α=(3cos2β1)3cos2β\cos 2\alpha = \dfrac{{\left( {3\cos 2\beta - 1} \right)}}{{3 - \cos 2\beta }} , then tanα\tan \alpha is equal to
A.2tanβ\sqrt 2 \tan \beta
B.tanβ\tan \beta
C.sin2β\sin 2\beta
D.2cotβ\sqrt 2 \cot \beta

Explanation

Solution

Hint : : In the given question we have to use the different identities of trigonometric ratios of compound angles we will use the formula cos2x=1tan2x1+tan2x\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}} in numerator and denominator of the given question. We have used this formula as we must find the value of tanα\tan \alpha and then compare it again with the identity of cos2x\cos 2x .

Complete step-by-step answer :
Given : cos2α=(3cos2β1)3cos2β\cos 2\alpha = \dfrac{{\left( {3\cos 2\beta - 1} \right)}}{{3 - \cos 2\beta }} …..equation (a) .
Now using the identity cos2x=1tan2x1+tan2x\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}} in equation (a) we get ,
cos2α=(3(1tan2β1+tan2β)1)3(1tan2β1+tan2β)\cos 2\alpha = \dfrac{{\left( {3\left( {\dfrac{{1 - {{\tan }^2}\beta }}{{1 + {{\tan }^2}\beta }}} \right) - 1} \right)}}{{3 - \left( {\dfrac{{1 - {{\tan }^2}\beta }}{{1 + {{\tan }^2}\beta }}} \right)}}
On solving we get ,
cos2α=(33tan2β1+tan2β)13(1tan2β1+tan2β)\cos 2\alpha = \dfrac{{\left( {\dfrac{{3 - 3{{\tan }^2}\beta }}{{1 + {{\tan }^2}\beta }}} \right) - 1}}{{3 - \left( {\dfrac{{1 - {{\tan }^2}\beta }}{{1 + {{\tan }^2}\beta }}} \right)}}
cos2α=(33tan2β1tan2β1+tan2β)(3+3tan2β1+tan2β1+tan2β)\cos 2\alpha = \dfrac{{\left( {\dfrac{{3 - 3{{\tan }^2}\beta - 1 - {{\tan }^2}\beta }}{{1 + {{\tan }^2}\beta }}} \right)}}{{\left( {\dfrac{{3 + 3{{\tan }^2}\beta - 1 + {{\tan }^2}\beta }}{{1 + {{\tan }^2}\beta }}} \right)}}
On solving further we get ,
cos2α=(24tan2β1+tan2β)(2+4tan2β1+tan2β)\cos 2\alpha = \dfrac{{\left( {\dfrac{{2 - 4{{\tan }^2}\beta }}{{1 + {{\tan }^2}\beta }}} \right)}}{{\left( {\dfrac{{2 + 4{{\tan }^2}\beta }}{{1 + {{\tan }^2}\beta }}} \right)}}
Now cancelling out the denominator we get ,
cos2α=24tan2β2+4tan2β\cos 2\alpha = \dfrac{{2 - 4{{\tan }^2}\beta }}{{2 + 4{{\tan }^2}\beta }}
Taking 22 common and cancelling it out we get ,
cos2α=12tan2β1+2tan2β\cos 2\alpha = \dfrac{{1 - 2{{\tan }^2}\beta }}{{1 + 2{{\tan }^2}\beta }} … equation ( b ) .
Now , we know that cos2α=1tan2α1+tan2α\cos 2\alpha = \dfrac{{1 - {{\tan }^2}\alpha }}{{1 + {{\tan }^2}\alpha }} , on comparing with equation (b) we get ,
tan2α=2tan2β{\tan ^2}\alpha = 2{\tan ^2}\beta
Taking square root on both sides we get ,
tanα=2tanβ\tan \alpha = \sqrt 2 \tan \beta .
Therefore , option ( 1 ) is the correct answer for this question .
So, the correct answer is “Option A”.

Note : Trigonometry is all about angles and their measurement . When discussing the various trigonometric functions, we keep in mind the formula of compound angles to give accurate results. A compound cut comprises two angles . The Trigonometric identities should be remembered to solve questions related to identities . Moreover , questions related to identities can be solved using different ways . Also the solution of the question can be different , it depends on the identity you are using in your question . . You also have to remember the values of trigonometric ratios at different angles . These questions are short and tricky .