Solveeit Logo

Question

Question: If \(\cos ^ { 2 } A + \cos ^ { 2 } C = \sin ^ { 2 } B\) then \(\triangle A B C\) is ....

If cos2A+cos2C=sin2B\cos ^ { 2 } A + \cos ^ { 2 } C = \sin ^ { 2 } B then ABC\triangle A B C is .

A

Equilateral

B

Right angled

C

Isosceles

D

None of these

Answer

Right angled

Explanation

Solution

It is obvious.

Trick : Obviously it is not an equilateral triangle because A = B = C = 60o does not satisfy the given condition. But B = 90o then sin2B=1\sin ^ { 2 } B = 1 and

cos2A+cos2C=cos2A+cos2(π2A)\cos ^ { 2 } A + \cos ^ { 2 } C = \cos ^ { 2 } A + \cos ^ { 2 } \left( \frac { \pi } { 2 } - A \right)

=cos2A+sin2A=1= \cos ^ { 2 } A + \sin ^ { 2 } A = 1

Hence this satisfy the condition, so it is a right angle triangle but not necessarily isosceles.