Question
Question: If \({\cos ^2}A + co{s^2}B + {\cos ^2}C = 1,\) then \(\Delta ABC\) is A) Equilateral B) Isosce...
If cos2A+cos2B+cos2C=1, then ΔABC is
A) Equilateral
B) Isosceles
C) Scalene
D) Right angled
Solution
Given cos2A+cos2B+cos2C=1, we know that cos2θ=2cos2θ−1 then convert cos2A and cos2B into cos2A and cos2B. Then equation will be cos2A+cos2B+2cos2C=0. we will use cosA+cosB=2cos(2A+B)cos(2A−B) for simplification. After simplification we will get cosCcosBcosA=0 this is possible only when any one angle is the right angle triangle.
Complete step by step solution:
Given cos2A+cos2B+cos2C=1,
Multiplying 2 to both side
2cos2A+2cos2B+2cos2C=2
Convert cos2A and cos2B into cos2A and cos2B by using cos2θ=2cos2θ−1
cos2A+1+cos2B+1+2cos2C=2
cos2A+cos2B+2cos2C=0
It is known that cosA+cosB=2cos(2A+B)cos(2A−B) then equation will be
2cos(22A+2B)cos(22A−2B)+2cos2C=0
2cos(A+B)cos(A−B)+2cos2C=0
ABC is a triangle sum of all the angle is 180∘ so A+B=π−C and cos(π−θ)=−cosθ
−2cosCcos(A−B)+2cos2C=0
Taking common 2cosC
−2cosC(cos(A−B)−cosC)=0
Again using cosA−cosB=2sin(2A+B)sin(2B−A) we get
cosCsin(2A−B+C)sin(2A−B−C)=0
A+C=π−B and B+C=π−A
cosCsin(2π−B)sin(A−2π)=0
We know that sin(2π−θ)=cosθ then
cosCcosBcosA=0
This can be 0 only if and only if one angle of the triangle is the right angle.
Hence proved ABC is a right angled triangle.
Note:
Formula used in this question are
cosA+cosB=2cos(2A+B)cos(2A−B)
cosA−cosB=2sin(2A+B)sin(2B−A)
sin(2π−θ)=cosθ