Question
Question: If \(\cos {18^ \circ } - \sin {18^ \circ } = \sqrt n \sin {27^ \circ }\), then \(n = \)...
If cos18∘−sin18∘=nsin27∘, then n=
Explanation
Solution
First we will convert consent into sine by using formula sinA=cos(2π−A). After this conversion we will use cosA−cosB=−2sin(2A+B)sin(2A−B) and on simplifying this we get the value of n.
Complete step-by-step answer:
cos18∘−sin18∘
We know that sinA=cos(2π−A), so on converting we get
⇒cos18∘−cos(90−18)∘
⇒cos18∘−cos72∘
Now using cosA−cosB=−2sin(2A+B)sin(2A−B)
Therefore, ⇒−2sin(272+18)∘sin(218−72)∘
⇒2sin45∘sin27∘
Substituting sin45∘=21 we get
⇒2sin27∘
Therefore, n=2
Note: This could be generalized as cosA−sinA=2sin(4π−A). Formula used to prove this are sinA=cos(2π−A) and cosA−cosB=−2sin(2A+B)sin(2A−B).
Generalized form
cosA−sinA