Solveeit Logo

Question

Question: If \(\cos {18^ \circ } - \sin {18^ \circ } = \sqrt n \sin {27^ \circ }\), then \(n = \)...

If cos18sin18=nsin27\cos {18^ \circ } - \sin {18^ \circ } = \sqrt n \sin {27^ \circ }, then n=n =

Explanation

Solution

First we will convert consent into sine by using formula sinA=cos(π2A)\sin A = \cos \left( {\dfrac{\pi }{2} - A} \right). After this conversion we will use cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) and on simplifying this we get the value of n.

Complete step-by-step answer:
cos18sin18\cos {18^ \circ } - \sin {18^ \circ }
We know that sinA=cos(π2A)\sin A = \cos \left( {\dfrac{\pi }{2} - A} \right), so on converting we get
cos18cos(9018)\Rightarrow \cos {18^ \circ } - \cos {\left( {90 - 18} \right)^ \circ }
cos18cos72\Rightarrow \cos {18^ \circ } - \cos {72^ \circ }
Now using cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)
Therefore, 2sin(72+182)sin(18722) \Rightarrow - 2\sin {\left( {\dfrac{{72 + 18}}{2}} \right)^ \circ }\sin {\left( {\dfrac{{18 - 72}}{2}} \right)^ \circ }
2sin45sin27\Rightarrow 2\sin {45^ \circ }\sin {27^ \circ }
Substituting sin45=12\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} we get
2sin27\Rightarrow \sqrt 2 \sin {27^ \circ }
Therefore, n=2n = 2

Note: This could be generalized as cosAsinA=2sin(π4A)\cos A - \sin A = \sqrt 2 \sin \left( {\dfrac{\pi }{4} - A} \right). Formula used to prove this are sinA=cos(π2A)\sin A = \cos \left( {\dfrac{\pi }{2} - A} \right) and cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right).
Generalized form
cosAsinA\cos A - \sin A

cosAcos(90A) 2sin(45)sin(Aπ4) 2sin(π4A)  \Rightarrow \cos A - \cos \left( {90 - A} \right) \\\ \Rightarrow - 2\sin {\left( {45} \right)^ \circ }\sin \left( {A - \dfrac{\pi }{4}} \right) \\\ \Rightarrow \sqrt 2 \sin \left( {\dfrac{\pi }{4} - A} \right) \\\