Solveeit Logo

Question

Question: If \(\cos 120^{o} = - \frac{1}{2}\)and \(\cos(180^{o} + 60^{o})\), then x =...

If cos120o=12\cos 120^{o} = - \frac{1}{2}and cos(180o+60o)\cos(180^{o} + 60^{o}), then x =

A

=cos60o=12= - \cos 60^{o} = - \frac{1}{2}

B

cos240o=12.\cos 240^{o} = - \frac{1}{2}.

C

θ=120o\theta = 120^{o}

D

240o240^{o}

Answer

=cos60o=12= - \cos 60^{o} = - \frac{1}{2}

Explanation

Solution

We have, tan(θ+φ)=1\tan(\theta + \varphi) = 1

Now check by options, put \Rightarrow

then θ+φ=π4\theta + \varphi = \frac{\pi}{4}

tan(πcosθ)=tan(π2πsinθ)\tan(\pi\cos\theta) = \tan\left( \frac{\pi}{2} - \pi\sin\theta \right) ⇒ 30 = 30

Hence (1) is the correct answer.