Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If cos1x+cos1y+cos1z=3π\cos^{-1} x +\cos^{-1} y +\cos^{-1}z = 3\pi , then xy+yz+zxxy + yz + zx is

A

1

B

0

C

-3

D

3

Answer

3

Explanation

Solution

cos1x+cos1y+cos1z=3π \cos^{-1} x +\cos^{-1} y +\cos^{-1}z = 3\pi
We know that 0cos1xπ 0\le\cos ^{-1}x \le\pi
cos1x=cos1y=cos1z=π\Rightarrow \cos ^{-1} x =\cos ^{-1}y =\cos ^{-1}z =\pi
x=y=z=1\Rightarrow x = y=z= -1
Now, xy+yz+zx xy+yz+zx
=(1)(1)+(1)(1)+(1)(1)=3= \left(-1\right)\left(-1\right)+\left(-1\right)\left(-1\right)+\left(-1\right)\left(-1\right)=3