Question
Question: If \[{{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=\pi \] , then prove that \[{{x}^{2}}+{{y}^{2}}+...
If cos−1x+cos−1y+cos−1z=π , then prove that x2+y2+z2+2xyz=1 .
Solution
Hint: Assume, θ=cos−1x , β=cos−1y , and α=cos−1z . Using this, transform the equation
cos−1x+cos−1y+cos−1z=π . Solve the equation θ+β=π−α , using the property cos(π−α)=−cosα and the formula cos(θ+β)=cosθcosβ−sinθsinβ . Then using the identity cos2θ+sin2θ=1⇒sin2θ=1−cos2θ⇒sinθ=1−cos2θ , get the values of sinθ and sinβ . Then put the values of cosθ , cosβ , cosα , sinθ and sinβ in the equation,
cosθcosβ−sinθsinβ=−cosα and solve it further.
Complete step-by-step answer:
According to the question, it is given that,
cos−1x+cos−1y+cos−1z=π …………………………(1)
Let us assume,
θ=cos−1x …………………(2)
β=cos−1y …………………….(3)
α=cos−1z ………………..(4)
Now, using equation (2), equation (3), and equation (4), we can transform equation (1).
On transforming equation (1), we get