Solveeit Logo

Question

Question: If \({{\cos }^{-1}}x-{{\cos }^{-1}}\left( \dfrac{y}{2} \right)=\alpha \) then \(4{{x}^{2}}-4xy\cos \...

If cos1xcos1(y2)=α{{\cos }^{-1}}x-{{\cos }^{-1}}\left( \dfrac{y}{2} \right)=\alpha then 4x24xycosα+y24{{x}^{2}}-4xy\cos \alpha +{{y}^{2}} is equal to?
(A)4sin2α (B)4sin2α (C)2sin2α (D)4 \begin{aligned} & \left( A \right)4{{\sin }^{2}}\alpha \\\ & \left( B \right)-4{{\sin }^{2}}\alpha \\\ & \left( C \right)2\sin 2\alpha \\\ & \left( D \right)4 \\\ \end{aligned}

Explanation

Solution

We first apply the formula of cos1x+cos1y{{\cos }^{-1}}x+{{\cos }^{-1}}y on the left hand side of the given equation. We then simplify the equation, and square it. Rearranging the terms and applying some basic trigonometric formulae, we get (A)\left( A \right) as the correct option.

Complete step by step answer:
The given equation is
cos1x+cos1(y2)=α{{\cos }^{-1}}x+{{\cos }^{-1}}\left( \dfrac{y}{2} \right)=\alpha
We know the formula that cos1x+cos1y=cos1(xy+(1x2)(1y2)){{\cos }^{-1}}x+{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right) . Thus, applying this formula in the above equation the equation thus becomes,
cos1(x(y2)+(1x2)(1(y2)2))=α\Rightarrow {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right)=\alpha
Taking cosine\text{cosine} on both sides on the above equation, we get,
cos(cos1(x(y2)+(1x2)(1(y2)2)))=cosα\Rightarrow \cos \left( {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right) \right)=\cos \alpha
We know the simple formula that cos(cos1x)=cosx\cos \left( {{\cos }^{-1}}x \right)=\cos x . So, applying this in the above equation, the equation thus becomes,
x(y2)+(1x2)(1(y2)2)=cosα\Rightarrow x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)}=\cos \alpha
Simplifying the above equation, we get,
xy2+(1x2)(4y24)=cosα\Rightarrow \dfrac{xy}{2}+\sqrt{\left( 1-{{x}^{2}} \right)\left( \dfrac{4-{{y}^{2}}}{4} \right)}=\cos \alpha
Further simplifying the above equation, the equation thus becomes,
xy2+(1x2)(4y2)2=cosα\Rightarrow \dfrac{xy}{2}+\dfrac{\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}}{2}=\cos \alpha
Multiplying both sides of the above equation by 22 , we get,
xy+(1x2)(4y2)=2cosα\Rightarrow xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}=2\cos \alpha
Taking cosα\cos \alpha to the left hand side of the above equation and (1x2)(4y2)\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)} to the right hand side of the above equation, we get,
xy2cosα=(1x2)(4y2)\Rightarrow xy-2\cos \alpha =-\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}
Squaring both sides of the above equation, the equation thus becomes,
(xy2cosα)2=((1x2)(4y2))2\Rightarrow {{\left( xy-2\cos \alpha \right)}^{2}}={{\left( -\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)} \right)}^{2}}
Evaluating the above equation, we get
x2y24xycosα+4cos2α=(1x2)(4y2)\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)
Opening the brackets in the above equation, we get,
x2y24xycosα+4cos2α=44x2y2+x2y2\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}}
Subtracting x2y2{{x}^{2}}{{y}^{2}} from both sides of the above equation, we get,
4xycosα+4cos2α=44x2y2\Rightarrow -4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}
Bringing the terms 4x2,y24{{x}^{2}},{{y}^{2}} to the left hand side of the above equation and the term 4cos2α4{{\cos }^{2}}\alpha to the right hand side of the above equation, we get,
4x2+y24xycosα=44cos2α\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4-4{{\cos }^{2}}\alpha
Taking 44 common in the right hand side of the above equation, we get,
4x2+y24xycosα=4(1cos2α)\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4\left( 1-{{\cos }^{2}}\alpha \right)
We know that 1cos2α=sin2α1-{{\cos }^{2}}\alpha ={{\sin }^{2}}\alpha . Thus, applying this formula in the above equation, we get,
4x2+y24xycosα=4sin2α\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4{{\sin }^{2}}\alpha
Rearranging the terms of the above equation, we get,
4x24xycosα+y2=4sin2α\Rightarrow 4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4{{\sin }^{2}}\alpha
This is nothing but the thing that we have to prove. Therefore, we can conclude that 4x24xycosα+y24{{x}^{2}}-4xy\cos \alpha +{{y}^{2}} is equal to 4sin2α4{{\sin }^{2}}\alpha which is option (A)\left( A \right) .

Note: We must be very careful while carrying out the square as this expression deals with a little complex terms and students are prone to make mistakes here. This problem can also be solved by taking some values for x,y,αx,y,\alpha and find out which of the following options gives the correct answer. Let’s take x=0,y=1x=0,y=1 . Then, α\alpha becomes cos10cos1(12)=π2π3=π6{{\cos }^{-1}}0-{{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}-\dfrac{\pi }{3}=\dfrac{\pi }{6} . The expression becomes 4(0)24(0)(1)cos(π6)+(1)2=14{{\left( 0 \right)}^{2}}-4\left( 0 \right)\left( 1 \right)\cos \left( \dfrac{\pi }{6} \right)+{{\left( 1 \right)}^{2}}=1 . Out of the following options, only (A)\left( A \right) satisfies by putting α=π6\alpha =\dfrac{\pi }{6}.