Solveeit Logo

Question

Question: If \({\cos ^{ - 1}}x = \alpha ,(0 < x < 1)\) and \({\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ -...

If cos1x=α,(0<x<1){\cos ^{ - 1}}x = \alpha ,(0 < x < 1) and sin1(2x1x2)+sec1(12x21)=2π3,{\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}, then tan1(2x){\tan ^{ - 1}}(2x) is equal to

A. π6 B. π4 C. π3 D. π2  A.{\text{ }}\dfrac{\pi }{6} \\\ B.{\text{ }}\dfrac{\pi }{4} \\\ C.{\text{ }}\dfrac{\pi }{3} \\\ D.{\text{ }}\dfrac{\pi }{2} \\\
Explanation

Solution

Hint- To evaluate the value of tan1(2x){\tan ^{ - 1}}(2x) we will first find the value of xx with the help of given equation, for it we will use some trigonometric formulas such as sin2a=2sinacosa and cos2a=2cos2a1\sin 2a = 2\sin a\cos a{\text{ and }}\cos 2a = 2{\cos ^2}a - 1

Complete step-by-step answer:
Given that, cos1x=α where (0<x<1)................(1){\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)................(1)
Therefore x=cosαx = \cos \alpha
And given equation is sin1(2x1x2)+sec1(12x21)=2π3{\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}
Now substitute the value of x=cosαx = \cos \alpha in the above equation, we get
sin1(2cosα1cos2α)+sec1(12cos2α1)=2π3\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3}
As we know that
1cos2A=sin2A 2sinAcosA=sin2A 2cos2A1=cos2A  1 - {\cos ^2}A = {\sin ^2}A \\\ 2\sin A\cos A = \sin 2A \\\ 2{\cos ^2}A - 1 = \cos 2A \\\
Now, using the above formulas, we obtain
sin1(2cosα1cos2α)+sec1(12cos2α1)=2π3 sin1(2cosαsin2α)+sec1(1cos2α)=2π3 sin1(sin2α)+sec1(1cos2α)=2π3 sin1(sin2α)+sec1(sec2α)=2π3 2α+2α=2π3 4α=2π3 α=π6  \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3} \\\ \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {{{\sin }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\\ \Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\\ \Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\sec 2\alpha } \right) = \dfrac{{2\pi }}{3} \\\ \Rightarrow 2\alpha + 2\alpha = \dfrac{{2\pi }}{3} \\\ \Rightarrow 4\alpha = \dfrac{{2\pi }}{3} \\\ \Rightarrow \alpha = \dfrac{\pi }{6} \\\
From equation (1)
x=cosπ6=32 2x=3  \because x = \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} \\\ \Rightarrow 2x = \sqrt 3 \\\
Therefore, the value of tan1(2x){\tan ^{ - 1}}(2x) is
tan1(2x)=tan1(3) =π3  {\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}(\sqrt 3 ) \\\ = \dfrac{\pi }{3} \\\
Hence, the value of tan1(2x){\tan ^{ - 1}}(2x) is π3\dfrac{\pi }{3}

Note- To solve these types of questions, memorize all the formulas of trigonometry like allied angle, addition, double angle, triple angle etc. Understand the concept of domain and range. As in above question, the function is given as cos1x=α where (0<x<1){\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1) and we make the function in terms of x such as x=cosαx = \cos \alpha . So, in this type of questions try to convert inverse terms to solve the questions.