Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If (cos1x)2(sin1x)2>0(\cos^{-1}x)^2-(\sin^{-1}x)^2>0, then

A

$x

B

$-1

C

$0\leq,x,

D

$-1\leq,x,

Answer

$-1\leq,x,

Explanation

Solution

(cos1x)2(sin1x)2>0\left(cos^{-1} x\right)^{2}-\left(sin^{-1}x\right)^{2}>0 (cos1x+sin1x)(cos1xsin1x)>0 \Rightarrow \left(cos^{-1}x+sin^{-1}x\right)\left(cos^{-1}x -sin^{-1}x\right) > 0 π2(π22sin1x)>0\Rightarrow \frac{\pi}{2}\left(\frac{\pi}{2} -2\,sin^{-1}x\right)>0 π2>2sin1x\Rightarrow \frac{\pi}{2}> 2 \,sin^{-1}x π4>sin1x\Rightarrow \frac{\pi}{4}>sin^{-1} x i.e., sin1x<π4sin^{-1}x < \frac{\pi}{4} Also π2sin1xπ2-\frac{\pi}{2}\le sin^{-1} x \le\frac{\pi}{2} π2sin1x<π4\therefore -\frac{\pi}{2} \le sin^{-1}x < \frac{\pi}{4} 1x<12 \Rightarrow -1 \le x < \frac{1}{\sqrt{2}}