Question
Mathematics Question on Quadratic Equations
If cos−1(pa)+cos−1(qb)=α, then p2a2+kcosα+q2b2=sin2α where k is equal to:
A
(A) −2pqab
B
(B) 2pqab
C
(C) −pqab
D
(D) pqab
Answer
(A) −2pqab
Explanation
Solution
Explanation:
Given,p2a2+kcosα+q2b2=sin2α......(i)cos−1(pa)+cos−1(qb)=αAs we know,cos−1x+cos−1y=cos−1(xy−1−x2⋅1−y2)cos−1(pqab−1−p2a21−q2b2)=αcosα=(pqab−1−p2a21−q2b2)pqab−cosα=1−p2a21−q2b2Squaring both sides, we get(pqab−cosα)2=(1−p2a21−q2b2)2(pq)2(ab)2+cos2α−2pqabcosα=(1−p2a2)(1−q2b2)(pq)2(ab)2+cos2α−2pqabcosα=1−p2a2−q2b2+(pq)2(ab)2sin2α=p2a2+q2b2−2pqabcosα.....(ii)Comparing equation (i) and (ii), we getk=−2pqabHence, the correct option is (A).