Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If cos1(y2)=loge(x5)5,y<2cos^{-1}(\frac{y}{2})=log_e(\frac{x}{5})^5, |y| < 2 then:

A

x2y′′+xy′–25y=0x^2y′′ + xy′ – 25y = 0

B

x2y′′–xy′–25y=0x^2y′′ – xy′ – 25y = 0

C

x2y′′–xy+25y=0x^2y′′ – xy′+ 25y = 0

D

x2y′′+xy+25y=0x^2y′′ + xy′+ 25y = 0

Answer

x2y′′+xy+25y=0x^2y′′ + xy′+ 25y = 0

Explanation

Solution

cos1(y2)=loge(x5)5,y<2cos^{-1}(\frac{y}{2})=log_e(\frac{x}{5})^5, |y| < 2

Differentiate on both side

11(y2)2×y2=5x5×15-\frac{ 1}{\sqrt{1-(\frac{y}{2})^2}} \times \frac{y'}{2} =\frac{ 5}{\frac{x}{5}} \times \frac{1}{5}

xy2=51(y2)2-\frac{xy'}{2} = 5 \sqrt{1-(\frac{y}{2})^2}

Square on both side

x2y24=25(4y24)\frac{x^2y'^2}{4} = 25\bigg(\frac{4-y^2}{4}\bigg)

Diff on both side

2xy2+2yyx2=25×2yy2xy'^2+2y'y''x^2=-25 \times 2yy'

xy+yx2+25y=0xy'+y''x^2+25y = 0

Hence, the correct option is (D): x2y′′+xy+25y=0x^2y′′ + xy′+ 25y = 0