Question
Mathematics Question on Trigonometric Identities
If cos−1(2y)=loge(5x)5,∣y∣<2 then:
A
x2y′′+xy′–25y=0
B
x2y′′–xy′–25y=0
C
x2y′′–xy′+25y=0
D
x2y′′+xy′+25y=0
Answer
x2y′′+xy′+25y=0
Explanation
Solution
cos−1(2y)=loge(5x)5,∣y∣<2
Differentiate on both side
−1−(2y)21×2y′=5x5×51
−2xy′=51−(2y)2
Square on both side
4x2y′2=25(44−y2)
Diff on both side
2xy′2+2y′y′′x2=−25×2yy′
xy′+y′′x2+25y=0
Hence, the correct option is (D): x2y′′+xy′+25y=0