Question
Mathematics Question on Inverse Trigonometric Functions
If cos−153+cos−11312=cos−1k, then the value of k is
A
6516
B
6512
C
6511
D
6519
Answer
6516
Explanation
Solution
We have,
cos−153+cos−11312=cos−1k
\Rightarrow \cos^{-1}\left\\{\frac{3}{5} \cdot \frac{12}{13}-\sqrt{1-\left(\frac{3}{5}\right)^{2}\sqrt{1-\left(\frac{12}{13}\right)^{2}}}\right\\} = \cos^{-1}\,k
[\because \cos^{-1}\,x + \cos^{-1}\, y = \cos^{-1}\left\\{xy-\sqrt{1-x^{2}}\sqrt{1-y^{2}}\right\\}, if
−1≤x,y≤1 and x+y≥0]
\Rightarrow \cos^{-1}\left\\{\frac{36}{65}-\frac{4}{5} \times \frac{5}{13}\right\\} = \cos^{-1}\,k
\Rightarrow \cos^{-1}\left\\{\frac{36}{65}-\frac{20}{65}\right\\} = \cos^{-1}\,k
⇒cos−16516=cos−1k
⇒k=6516