Solveeit Logo

Question

Question: If \(\cos^{- 1}\left( \frac{x}{a} \right) + \cos^{- 1}\left( \frac{y}{b} \right) = \alpha\), then \(...

If cos1(xa)+cos1(yb)=α\cos^{- 1}\left( \frac{x}{a} \right) + \cos^{- 1}\left( \frac{y}{b} \right) = \alpha, then x2a22xyabcosα+y2b2=\frac{x^{2}}{a^{2}} - \frac{2xy}{ab}\cos\alpha + \frac{y^{2}}{b^{2}} =

A

sin2α\sin^{2}\alpha

B

cos2α\cos^{2}\alpha

C

tan2α\tan^{2}\alpha

D

cot2α\cot^{2}\alpha

Answer

sin2α\sin^{2}\alpha

Explanation

Solution

We have cos1[xa.yb(1x2a2)(1y2b2)]=α\cos^{- 1}\left\lbrack \frac{x}{a}.\frac{y}{b} - \sqrt{\left( 1 - \frac{x^{2}}{a^{2}} \right)}\sqrt{\left( 1 - \frac{y^{2}}{b^{2}} \right)} \right\rbrack = \alpha

xyab(1x2a2)(1y2b2)=cosα\Rightarrow \frac{xy}{ab} - \sqrt{\left( 1 - \frac{x^{2}}{a^{2}} \right)}\sqrt{\left( 1 - \frac{y^{2}}{b^{2}} \right)} = \cos\alpha

\therefore (xyabcosα)2=1x2a2y2b2+x2y2a2b2\left( \frac{xy}{ab} - \cos\alpha \right)^{2} = 1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} + \frac{x^{2}y^{2}}{a^{2}b^{2}}

x2y2a2b2+cos2α2xyabcosα=1x2a2y2b2+x2y2a2b2\frac{x^{2}y^{2}}{a^{2}b^{2}} + \cos^{2}\alpha - \frac{2xy}{ab}\cos\alpha = 1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} + \frac{x^{2}y^{2}}{a^{2}b^{2}}

x2a22xyabcosα+y2b2=1cos2α=sin2α\frac{x^{2}}{a^{2}} - \frac{2xy}{ab}\cos\alpha + \frac{y^{2}}{b^{2}} = 1 - \cos^{2}\alpha = \sin^{2}\alpha