Solveeit Logo

Question

Question: If \(\cos ^ { - 1 } x + \cos ^ { - 1 } y + \cos ^ { - 1 } z = 3 \pi\) then \(x y + y z + z x =\)...

If cos1x+cos1y+cos1z=3π\cos ^ { - 1 } x + \cos ^ { - 1 } y + \cos ^ { - 1 } z = 3 \pi then xy+yz+zx=x y + y z + z x =

A

0

B

1

C

3

D

–3

Answer

3

Explanation

Solution

Given cos1x+cos1y+cos1z=3π\cos ^ { - 1 } x + \cos ^ { - 1 } y + \cos ^ { - 1 } z = 3 \pi

0cos1xπ\because 0 \leq \cos ^ { - 1 } x \leq \pi

0cos1yπ\therefore 0 \leq \cos ^ { - 1 } y \leq \piand 0cos1zπ0 \leq \cos ^ { - 1 } z \leq \pi

Here cos1x=cos1y=cos1z=π\cos ^ { - 1 } x = \cos ^ { - 1 } y = \cos ^ { - 1 } z = \pi

x=y=z=cosπ=1\Rightarrow x = y = z = \cos \pi = - 1

xy+yz+zxx y + y z + z x =(1)(1)+(1)(1)+(1)(1)= ( - 1 ) ( - 1 ) + ( - 1 ) ( - 1 ) + ( - 1 ) ( - 1 )

=1+1+1=3= 1 + 1 + 1 = 3.