Question
Question: If complex numbers \(z_{1},z_{2}\) and \(z_{3}\) represent the vertices A, B and C respectively of a...
If complex numbers z1,z2 and z3 represent the vertices A, B and C respectively of an isosceles triangle ABC of which ∠C is right angle, then correct statement is
A
z12+z22+z32=z1z2z3
B
(z3−z1)2=z3−z2
C
(z1−z2)2=(z1−z3)(z3−z2)
D
(z1−z2)2=2(z1−z3)(z3−z2)
Answer
(z1−z2)2=2(z1−z3)(z3−z2)
Explanation
Solution
Sol. BC=AC and ∠C=π/2
By rotation about C in anticlockwise sense CB=CAeiπ/2
⇒ (z2−z3)=(z1−z3)eiπ/2=i(z1−z3)
⇒ (z2−z3)2=−(z1−z3)2⇒ z22+z32−2z2z3=−z12−z32+2z1z3
⇒ z12+z22−2z1z2=2z1z3+2z2z3−2z32−2z1z2
⇒ (z1−z2)2=2[(z1z3−z32)−(z1z2−z2z3)]
⇒ (z1−z2)2=2(z1−z3)(z3−z2).
