Solveeit Logo

Question

Question: If complex numbers $\overline{z_1},\overline{z_2},\overline{z_3},\overline{z_4}$ are the roots of th...

If complex numbers z1,z2,z3,z4\overline{z_1},\overline{z_2},\overline{z_3},\overline{z_4} are the roots of the equation z4=1z^4 = 1 then the value of z14+z24+z34+z44|z_1^4 + z_2^4 + z_3^4 + z_4^4| is equal to ____.

Answer

4

Explanation

Solution

Let z1,z2,z3,z4\overline{z_1}, \overline{z_2}, \overline{z_3}, \overline{z_4} be the roots of z4=1z^4 = 1. The 4th roots of unity are 1,i,1,i1, i, -1, -i.

Since the conjugate of a root is still a 4th root of unity (because the conjugate of z4z^4 equals (z)4(\overline{z})^4), we have:

z14=z24=z34=z44=1.z_1^4 = z_2^4 = z_3^4 = z_4^4 = 1.

Thus,

z14+z24+z34+z44=1+1+1+1=4.z_1^4 + z_2^4 + z_3^4 + z_4^4 = 1 + 1 + 1 + 1 = 4.

Taking the absolute value:

z14+z24+z34+z44=4=4.\left| z_1^4 + z_2^4 + z_3^4 + z_4^4 \right| = |4| = 4.

Core Explanation

Each term zi4z_i^4 equals 1, so the sum is 4 and its absolute value is 4.