Solveeit Logo

Question

Question: If coefficients of \(( - 1)^{n}\) term and \(n + 1\) term are equal in the expansion of \(y = 3x + 6...

If coefficients of (1)n( - 1)^{n} term and n+1n + 1 term are equal in the expansion of y=3x+6x2+10x3+....,y = 3x + 6x^{2} + 10x^{3} + ...., then the value of r will be.

A

14

B

15

C

13

D

16

Answer

14

Explanation

Solution

Coefficient of (1+x)20(1 + x)^{20} term in expansion of

(1 + x)43 = rthr^{th} and coefficient of (a+2x)n(a + 2x)^{n} term

= coefficient of n(n+1)....(nr+1)r!anr+1(2x)r\frac{n(n + 1)....(n - r + 1)}{r!}a^{n - r + 1}(2x)^{r} term = n(n1)....(nr+2)(r1)!anr+1(2x)r1\frac{n(n - 1)....(n - r + 2)}{(r - 1)!}a^{n - r + 1}(2x)^{r - 1}

According to question n(n+1)....(nr)(r+1)!anr(x)r\frac{n(n + 1)....(n - r)}{(r + 1)!}a^{n - r}(x)^{r} 16th16^{th}

then (xy)17(\sqrt{x} - \sqrt{y})^{17}or 136xy7136xy^{7} or 136xy136xy.