Solveeit Logo

Question

Question: If coefficient of a<sup>2</sup>b<sup>3</sup>c<sup>4</sup> in (a + b + c)<sup>m</sup>, (where mĪN) is...

If coefficient of a2b3c4 in (a + b + c)m, (where mĪN) is L (L ≠ 0) then in same expansion coefficient of a4b4c1 will be

A

L

B

L3\frac{L}{3}

C

mL4\frac{mL}{4}

D

L2\frac{L}{2}

Answer

L2\frac{L}{2}

Explanation

Solution

as L ¹ 0 \ m = 2 + 3 + 4 = 9

\ L = 9!2!3!4!\frac{9!}{2!3!4!}

Now coefficient of a4b4c = 9!4!4!1!=L2\frac{9!}{4!4!1!} = \frac{L}{2}