Solveeit Logo

Question

Question: If circles x<sup>2</sup> + y<sup>2</sup> + kx + 4y + 2= 0 and 2(x<sup>2</sup> + y<sup>2</sup>) – 4x...

If circles x2 + y2 + kx + 4y + 2= 0 and

2(x2 + y2) – 4x – 3y + k = 0 intersect orthogonally, then k is equal to

A

103\frac{10}{3}

B

103- \frac{10}{3}

C

83\frac{8}{3}

D

83\frac{8}{3}

Answer

103- \frac{10}{3}

Explanation

Solution

x2 + y2 + kx + 4y + 2 = 0 and

x2 + y2 – 2x – 32\frac{3}{2}y + k2\frac{k}{2}= 0

\ 2g1 g2 + 2f1 f2 = c1 + c2

2 (k2)(1)+2(2)(34)=2+k2\left( \frac{k}{2} \right)( - 1) + 2(2)\left( - \frac{3}{4} \right) = 2 + \frac{k}{2}

– k + (–3) = 4+k2\frac{4 + k}{2}

– 2k – 6 = 4 + k

– 3k = 10 ̃ k = –103\frac{10}{3}