Question
Question: If circles \(x ^ { 2 } + y ^ { 2 } + 2 a x + c = 0\) and \(x ^ { 2 } + y ^ { 2 } + 2 b y + c = 0\)...
If circles x2+y2+2ax+c=0 and x2+y2+2by+c=0 touch each other, then
A
a1+b1=c1
B
a21+b21=c21
C
a1+b1=c2
D
a21+b21=c1
Answer
a21+b21=c1
Explanation
Solution
C2=(0,−b),r2=b2−c;
C1C2=a2+b2
∙∙ Circles touch each other, therefore r1+r2=C1C2
⇒ a2−c+b2−c=a2+b2
⇒a2b2−b2c−a2c=0
Multiplying by a2b2c21 we get a21+b21=c1 .