Solveeit Logo

Question

Question: If CF is the perpendicular from the centre C of the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{...

If CF is the perpendicular from the centre C of the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 on the tangent at any point P, and G is the point when the normal at P meets the major axis, then CF. PG =

A

a2a^{2}

B

abab

C

b2b^{2}

D

b3b^{3}

Answer

b2b^{2}

Explanation

Solution

Ellipse is x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1

Tangent at 'P' is xacosφ+ybsinφ=1\frac{x}{a}\cos\varphi + \frac{y}{b}\sin\varphi = 1

CF=1(cos2φa2+sin2φb2)\therefore CF = \frac{1}{\sqrt{\left( \frac{\cos^{2}\varphi}{a^{2}} + \frac{\sin^{2}\varphi}{b^{2}} \right)}}

=ab(a2sin2φ)+b2cos2φ\frac{ab}{\sqrt{\left( a^{2}\sin^{2}\varphi \right) + b^{2}\cos^{2}\varphi}}

Equation of normal at P

=axsecφbycosecφ=a2b2ax\sec\varphi - by\cos ec\varphi = a^{2} - b^{2}then G=((a2b2)acosφ,0)G = \left( \frac{\left( a^{2} - b^{2} \right)}{a}\cos\varphi,0 \right)

PG=(acosφ(a2b2)acosφ)2+b(sinφ0)2\therefore PG = \sqrt{\left( a\cos\varphi - \frac{\left( a^{2} - b^{2} \right)}{a}\cos\varphi \right)^{2} + b\left( \sin\varphi - 0 \right)^{2}}=

(b4a2cos2φ+b2sin2φ)\sqrt{\left( \frac{b^{4}}{a^{2}}\cos^{2}\varphi + b^{2}\sin^{2}\varphi \right)}

=ba(a2sinφ+b2cos2φ)\frac{b}{a}\sqrt{\left( a^{2}\sin\varphi + b^{2}\cos^{2}\varphi \right)}

CF.PG=b2CF.PG = b^{2}