Question
Question: If CF is the perpendicular from the centre C of the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{...
If CF is the perpendicular from the centre C of the ellipse a2x2+b2y2=1 on the tangent at any point P, and G is the point when the normal at P meets the major axis, then CF. PG =
A
a2
B
ab
C
b2
D
b3
Answer
b2
Explanation
Solution
Ellipse is a2x2+b2y2=1
Tangent at 'P' is axcosφ+bysinφ=1
∴CF=(a2cos2φ+b2sin2φ)1
=(a2sin2φ)+b2cos2φab
Equation of normal at P
=axsecφ−bycosecφ=a2−b2then G=(a(a2−b2)cosφ,0)
∴PG=(acosφ−a(a2−b2)cosφ)2+b(sinφ−0)2=
(a2b4cos2φ+b2sin2φ)
=ab(a2sinφ+b2cos2φ)
⇒ CF.PG=b2