Solveeit Logo

Question

Question: If \({{C}_{K}}\) is the coefficient of \({{x}^{K}}\) in \({{\left( 1+x \right)}^{2005}}\) and if \(a...

If CK{{C}_{K}} is the coefficient of xK{{x}^{K}} in (1+x)2005{{\left( 1+x \right)}^{2005}} and if a,dRa,d\in R then K=02005(a+Kd).CK=\sum\limits_{K=0}^{2005}{\left( a+Kd \right).{{C}_{K}}=}
A. (2a+2005d)22004\left( 2a+2005d \right){{2}^{2004}}
B. (2a+2005d)22005\left( 2a+2005d \right){{2}^{2005}}
C. (2a+2004d)22005\left( 2a+2004d \right){{2}^{2005}}
D. (2a+2004d)22004\left( 2a+2004d \right){{2}^{2004}}

Explanation

Solution

We here need to find the value of K=02005(a+Kd).CK\sum\limits_{K=0}^{2005}{\left( a+Kd \right).{{C}_{K}}}. For this we have been given that a and d are two real numbers and CK{{C}_{K}} is the coefficient of xK{{x}^{K}} in (1+x)2005{{\left( 1+x \right)}^{2005}}. Since, CK{{C}_{K}} is the coefficient of xK{{x}^{K}} in (1+x)2005{{\left( 1+x \right)}^{2005}}, we will get the value of CK{{C}_{K}} as:
CK=2005!K!(2005K)!{{C}_{K}}=\dfrac{2005!}{K!\left( 2005-K \right)!}
Then, we will break the given sigma into two sigmas K=02005(a.CK)\sum\limits_{K=0}^{2005}{(a.{{C}_{K}})} and K=02005(Kd.CK)\sum\limits_{K=0}^{2005}{(Kd.{{C}_{K}})} respectively by the property (x+y).Z=(xZ)+(yZ)\sum{\left( x+y \right).Z}=\sum{\left( xZ \right)+\sum{\left( yZ \right)}}. Then we will solve both these sigmas separately. We will take out the constants from the sigma and try to make what’s left over inside in the form of r=0nCr\sum\limits_{r=0}^{n}{{{C}_{r}}} as this value is given as: r=0nCr=2n\sum\limits_{r=0}^{n}{{{C}_{r}}}={{2}^{n}}. Hence, we will obtain the values of both these separate sigmas. Adding those values, we will get our desired result.

Complete step by step answer:
Now, we have been given that CK{{C}_{K}} is the coefficient of xK{{x}^{K}} in (1+x)2005{{\left( 1+x \right)}^{2005}}.
Now, we know that the coefficient of xr{{x}^{r}} in (1+x)n{{\left( 1+x \right)}^{n}} is given as:
nCr=n!r!(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}
Hence, the value of CK{{C}_{K}} is given as:
CK=2005!K!(2005K)!{{C}_{K}}=\dfrac{2005!}{K!\left( 2005-K \right)!}
Now, we have been asked to find the value of K=02005(a+Kd).CK\sum\limits_{K=0}^{2005}{\left( a+Kd \right).{{C}_{K}}} where a and d are two real numbers.
Now, we know that (x+y).Z=(xZ)+(yZ)\sum{\left( x+y \right).Z}=\sum{\left( xZ \right)+\sum{\left( yZ \right)}}
Thus, applying this property in K=02005(a+Kd).CK\sum\limits_{K=0}^{2005}{\left( a+Kd \right).{{C}_{K}}}, we get:
K=02005(a+Kd).CK K=02005(a.CK)+K=02005(Kd.CK) \begin{aligned} & \sum\limits_{K=0}^{2005}{\left( a+Kd \right).{{C}_{K}}} \\\ & \Rightarrow \sum\limits_{K=0}^{2005}{(a.{{C}_{K}})}+\sum\limits_{K=0}^{2005}{(Kd.{{C}_{K}})} \\\ \end{aligned}
Thus, we have two sigmas to solve which when combined will give us our required answer.
We will now first solve the sigma K=02005(a.CK)\sum\limits_{K=0}^{2005}{(a.{{C}_{K}})}.
Now, since ‘a’ is a real constant, we can take it outside the sigma by the property (kx)=kx\sum{\left( kx \right)}=k\sum{x} where ‘k’ is a constant and x is a variable.
Hence, we get the value of K=02005(a.CK)\sum\limits_{K=0}^{2005}{(a.{{C}_{K}})} as:
K=02005(a.CK) aK=02005CK \begin{aligned} & \sum\limits_{K=0}^{2005}{(a.{{C}_{K}})} \\\ & \Rightarrow a\sum\limits_{K=0}^{2005}{{{C}_{K}}} \\\ \end{aligned}
Now, we know that the value of r=0nCr=2n\sum\limits_{r=0}^{n}{{{C}_{r}}}={{2}^{n}}
Here, r=K and n=2005.
Thus, we get:
aK=02005CK a(22005) a.22005 \begin{aligned} & a\sum\limits_{K=0}^{2005}{{{C}_{K}}} \\\ & \Rightarrow a\left( {{2}^{2005}} \right) \\\ & \Rightarrow a{{.2}^{2005}} \\\ \end{aligned}
Hence, the value of the first sigma is equal to a.22005a{{.2}^{2005}}
Now, we will solve our second sigma K=02005(Kd.CK)\sum\limits_{K=0}^{2005}{(Kd.{{C}_{K}})}.
Here, out of K and d, d is a real constant. Thus, we can take d out of the sigma by the property (kx)=kx\sum{\left( kx \right)}=k\sum{x} where ‘k’ is a constant and x is a variable.
Thus, we get the value of K=02005(Kd.CK)\sum\limits_{K=0}^{2005}{(Kd.{{C}_{K}})} as:
K=02005(Kd.CK) dK=02005KCK \begin{aligned} & \sum\limits_{K=0}^{2005}{(Kd.{{C}_{K}})} \\\ & \Rightarrow d\sum\limits_{K=0}^{2005}{K{{C}_{K}}} \\\ \end{aligned}
Now, we will expand the value of CK{{C}_{K}} as mentioned above:
dK=02005KCK dK=02005K.2005!K!(2005K)! \begin{aligned} & d\sum\limits_{K=0}^{2005}{K{{C}_{K}}} \\\ & \Rightarrow d\sum\limits_{K=0}^{2005}{K.\dfrac{2005!}{K!\left( 2005-K \right)!}} \\\ \end{aligned}
Now, we know that n! can be also expressed as:
n(n1)!=n(n1)(n2)!=...n\left( n-1 \right)!=n\left( n-1 \right)\left( n-2 \right)!=...
Thus, expanding the factorials in the above expansion of the sigma as mentioned here we get:
dK=02005K.2005!K!(2005K)! dK=02005K.2005.(20051)!K(K1)!(2005K)! dK=020052005.2004!(K1)!(2005K)! \begin{aligned} & d\sum\limits_{K=0}^{2005}{K.\dfrac{2005!}{K!\left( 2005-K \right)!}} \\\ & \Rightarrow d\sum\limits_{K=0}^{2005}{K.\dfrac{2005.\left( 2005-1 \right)!}{K\left( K-1 \right)!\left( 2005-K \right)!}} \\\ & \Rightarrow d\sum\limits_{K=0}^{2005}{\dfrac{2005.2004!}{\left( K-1 \right)!\left( 2005-K \right)!}} \\\ \end{aligned}
Now, we can write 2005-K as:
2004-(K-1)
Hence, writing 2005-K in the way mentioned we get:
dK=020052005.2004!(K1)!(2005K)! dK=020052005.2004!(K1)!(2004(K1))! d.2005K=020052004!(K1)!(2004(K1))! \begin{aligned} & d\sum\limits_{K=0}^{2005}{\dfrac{2005.2004!}{\left( K-1 \right)!\left( 2005-K \right)!}} \\\ & \Rightarrow d\sum\limits_{K=0}^{2005}{\dfrac{2005.2004!}{\left( K-1 \right)!\left( 2004-\left( K-1 \right) \right)!}} \\\ & \Rightarrow d.2005\sum\limits_{K=0}^{2005}{\dfrac{2004!}{\left( K-1 \right)!\left( 2004-\left( K-1 \right) \right)!}} \\\ \end{aligned}
Now, we can see that 2004!(K1)!(2004(K1))!\dfrac{2004!}{\left( K-1 \right)!\left( 2004-\left( K-1 \right) \right)!} is in the form of n!r!(nr)!\dfrac{n!}{r!\left( n-r \right)!} which is equal to nCr^{n}{{C}_{r}} .
Thus, 2004!(K1)!(2004(K1))!\dfrac{2004!}{\left( K-1 \right)!\left( 2004-\left( K-1 \right) \right)!} will be equal to:
2004CK1^{2004}{{C}_{K-1}}
Hence, putting the value of 2004!(K1)!(2004(K1))!\dfrac{2004!}{\left( K-1 \right)!\left( 2004-\left( K-1 \right) \right)!} in the required value of sigma we get:
d.2005K=020052004!(K1)!(2004(K1))! 2005dK=020052004CK1 \begin{aligned} & d.2005\sum\limits_{K=0}^{2005}{\dfrac{2004!}{\left( K-1 \right)!\left( 2004-\left( K-1 \right) \right)!}} \\\ & \Rightarrow 2005d\sum\limits_{K=0}^{2005}{^{2004}{{C}_{K-1}}} \\\ \end{aligned}
Now, we know that K=020052004CK1\sum\limits_{K=0}^{2005}{^{2004}{{C}_{K-1}}} will be equal to 22004{{2}^{2004}} by the property r=0nCr=2n\sum\limits_{r=0}^{n}{{{C}_{r}}}={{2}^{n}}.
Hence, we get our sigma as:
2005dK=020052004CK1 2005d(22004) 22004.2005d \begin{aligned} & 2005d\sum\limits_{K=0}^{2005}{^{2004}{{C}_{K-1}}} \\\ & \Rightarrow 2005d\left( {{2}^{2004}} \right) \\\ & \Rightarrow {{2}^{2004}}.2005d \\\ \end{aligned}
Hence, we get the value of our second sigma as 22004.2005d{{2}^{2004}}.2005d.
Now, by adding the values of both these sigmas obtained, we get the value of our required sigma.
Hence, we get:
K=02005(a+Kd).CK=K=02005(a.CK)+K=02005(Kd.CK) K=02005(a+Kd).CK=22005.a+22004.2005d \begin{aligned} & \sum\limits_{K=0}^{2005}{\left( a+Kd \right).{{C}_{K}}}=\sum\limits_{K=0}^{2005}{(a.{{C}_{K}})}+\sum\limits_{K=0}^{2005}{(Kd.{{C}_{K}})} \\\ & \Rightarrow \sum\limits_{K=0}^{2005}{\left( a+Kd \right).{{C}_{K}}}={{2}^{2005}}.a+{{2}^{2004}}.2005d \\\ \end{aligned}
By taking 22004{{2}^{2004}} common, we get:
K=02005(a+Kd).CK=22005.a+22004.2005d K=02005(a+Kd).CK=(2a+2005d)22004 \begin{aligned} & \sum\limits_{K=0}^{2005}{\left( a+Kd \right).{{C}_{K}}}={{2}^{2005}}.a+{{2}^{2004}}.2005d \\\ & \Rightarrow \sum\limits_{K=0}^{2005}{\left( a+Kd \right).{{C}_{K}}}=\left( 2a+2005d \right){{2}^{2004}} \\\ \end{aligned}
Hence, the required answer is (2a+2005d)22004\left( 2a+2005d \right){{2}^{2004}}

So, the correct answer is “Option A”.

Note: We have here used the property r=0nCr=2n\sum\limits_{r=0}^{n}{{{C}_{r}}}={{2}^{n}}.
Its proof is given as follows:
We know that the binomial expansion (x+y)n{{\left( x+y \right)}^{n}} in sigma form is expressed as:
(x+y)n=r=0nnCr.xnr.yr{{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}.{{x}^{n-r}}.{{y}^{r}}}
If we keep both x=1 and y=1, we will get:
(x+y)n=r=0nnCr.xnr.yr (1+1)2=r=0nnCr.1nr.1r r=0nnCr=2n \begin{aligned} & {{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}.{{x}^{n-r}}.{{y}^{r}}} \\\ & \Rightarrow {{\left( 1+1 \right)}^{2}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{.1}^{n-r}}{{.1}^{r}}} \\\ & \Rightarrow \sum\limits_{r=0}^{n}{^{n}{{C}_{r}}}={{2}^{n}} \\\ \end{aligned}
Hence, proved.