Solveeit Logo

Question

Question: If C is the middle point of AB and P is any point outside AB, then...

If C is the middle point of AB and P is any point outside AB, then

A

PA+PB=PC\overset{\rightarrow}{PA} + \overset{\rightarrow}{PB} = \overset{\rightarrow}{PC}

B

PA+PB=2PC\overset{\rightarrow}{PA} + \overset{\rightarrow}{PB} = 2\overset{\rightarrow}{PC}

C

PA+PB+PC=0\overset{\rightarrow}{PA} + \overset{\rightarrow}{PB} + \overset{\rightarrow}{PC} = 0

D

PA+PB+2PC=0\overset{\rightarrow}{PA} + \overset{\rightarrow}{PB} + 2\overset{\rightarrow}{PC} = 0

Answer

PA+PB=2PC\overset{\rightarrow}{PA} + \overset{\rightarrow}{PB} = 2\overset{\rightarrow}{PC}

Explanation

Solution

PA+PB=(PA+AC)+(PB+BC)(AC+BC)\overset{\rightarrow}{PA} + \overset{\rightarrow}{PB} = (\overset{\rightarrow}{PA} + \overset{\rightarrow}{AC}) + (\overset{\rightarrow}{PB} + \overset{\rightarrow}{BC}) - (\overset{\rightarrow}{AC} + \overset{\rightarrow}{BC})

= PC+PC(ACCB)=2PC0,\overset{\rightarrow}{PC} + \overset{\rightarrow}{PC} - (\overset{\rightarrow}{AC} - \overset{\rightarrow}{CB}) = 2\overset{\rightarrow}{PC} - 0, (AC=CB)(\because\overset{\rightarrow}{AC} = \overset{\rightarrow}{CB})

\therefore PA+PB=2PC\overset{\rightarrow}{PA} + \overset{\rightarrow}{PB} = 2\overset{\rightarrow}{PC}.