Solveeit Logo

Question

Mathematics Question on Conic sections

If CC is the centre of the ellipse x216+y29=1\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1 and S is one of the foci, then the ratio of CS to semi-minor axis of the ellipse is

A

8:3 \sqrt{8} : 3

B

7:3 \sqrt{7} : 3

C

77:37 \sqrt{7} : 3

D

3:773:7 \sqrt{7}

Answer

7:3 \sqrt{7} : 3

Explanation

Solution

x216+y29=1\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1
a=4,b=3a = 4, b = 3
e=1916=716=74\therefore e= \sqrt{1 - \frac{9}{16}} = \sqrt{\frac{7}{16} } = \frac{\sqrt{7}}{4}

ae=7ae = \sqrt{7}
CS=(ae0)2+(00)2=aeCS = \sqrt{\left(ae -0\right)^{2} + \left(0 -0\right)^{2}} =ae
CS=7CS = \sqrt{7}
Semi-minor axis is b=3b = 3
CSb=73=7:3\therefore \:\:\: \frac{CS}{b} = \frac{\sqrt{7}}{3} = \sqrt{7} : 3