Question
Question: If C denotes the binomial coefficient \(^{n}{{C}_{r}}\)then \(\left( -1 \right)C_{0}^{2}+2C_{1}^{2}+...
If C denotes the binomial coefficient nCrthen \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=$$$$$
A.\left( 3n-2 \right)\left( ^{2n}{{C}{n}} \right)
B. $\left( \dfrac{3n-2}{2} \right)\left( ^{2n}{{C}_{n}} \right)
C. {{\left( 5+3n \right)}^{2n}}\left( ^{2n}{{C}_{n}} \right)$$$$$
D. \left( \dfrac{3n-5}{2} \right)\left( ^{2n}{{C}{n}} \right)$$$$$
Solution
We can write the given summation as 3n=0∑nnCn2−n=0∑nCn2. We find the binomial expansion of A=(1+x)n,B=(1+x1)n and then differentiate Ato getD. We multiply respective sides of A,B and equate the constant term to getn=0∑nCn2. We multiply respective sides of A,B and equate coefficient of x−1 to getn=0∑nnCn2.$$$$
Complete step-by-step solution
The given summation is
(−1)C02+2C12+5C22+...+(3n−1)Cn2
We can write the above expression as a summation of the general term (3n−1)Cn2 where n=0,1,2,...n. We have