Solveeit Logo

Question

Question: If c = 3a-2b then the value of a (b x c) =...

If c = 3a-2b then the value of a (b x c) =

A

1

B

0

C

~1

D

2

Answer

0

Explanation

Solution

Given

c=3a2b.\mathbf{c} = 3\mathbf{a} - 2\mathbf{b}.

We need to evaluate:

a(b×c)=a(b×(3a2b)).\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot \left(\mathbf{b} \times (3\mathbf{a} - 2\mathbf{b})\right).

Using the distributive property of the cross product:

b×(3a2b)=3(b×a)2(b×b).\mathbf{b} \times (3\mathbf{a} - 2\mathbf{b}) = 3 (\mathbf{b} \times \mathbf{a}) - 2 (\mathbf{b} \times \mathbf{b}).

Since b×b=0\mathbf{b} \times \mathbf{b} = \mathbf{0}, we have:

b×(3a2b)=3(b×a).\mathbf{b} \times (3\mathbf{a} - 2\mathbf{b}) = 3 (\mathbf{b} \times \mathbf{a}).

Thus,

a(b×c)=3a(b×a).\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 3 \, \mathbf{a} \cdot (\mathbf{b} \times \mathbf{a}).

Note that the scalar triple product a(b×a)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{a}) is zero because b×a\mathbf{b} \times \mathbf{a} is perpendicular to a\mathbf{a}. Hence,

a(b×c)=3×0=0.\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 3\times 0 = 0.

Using the distributive property and noting that b×b=0\mathbf{b} \times \mathbf{b} = \mathbf{0} and a(b×a)=0\mathbf{a} \cdot (\mathbf{b} \times \mathbf{a}) = 0, we get the final answer as 0.