Solveeit Logo

Question

Question: If C = 2 cos q then the value of the determinant D =\(\left| \begin{matrix} C & 1 & 0 \\ 1 & C & 1 ...

If C = 2 cos q then the value of the determinant

D =C101C161C\left| \begin{matrix} C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C \end{matrix} \right|is

A

sin4θsinθ\frac{\sin 4\theta}{\sin\theta}

B

2sin22θsinθ\frac{2\sin^{2}2\theta}{\sin\theta}

C

4cos2 q

D

None

Answer

None

Explanation

Solution

Given that C = 2cos q

D =C101C161C\left| \begin{matrix} C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C \end{matrix} \right|= C(C2 –1) –1(C –6)

D = 2 cos q (4 cos2q –1) – (2 cos q – 6)

D = 8 cos3 q – 4 cos q + 6