Solveeit Logo

Question

Mathematics Question on binomial expansion formula

If C0,C1,C2,.....Cn{{C}_{0}},{{C}_{1}},{{C}_{2}},.....{{C}_{n}} denotes the binomial coefficients in the expansion of (1+x)n,{{(1+x)}^{n}}, then C0+C12+C23+....+Cnn+1{{C}_{0}}+\frac{{{C}_{1}}}{2}+\frac{{{C}_{2}}}{3}+....+\frac{{{C}_{n}}}{n+1} is equal to

A

2n+11n+1\frac{{{2}^{n+1}}-1}{n+1}

B

2n1n\frac{{{2}^{n}}-1}{n}

C

2n11n1\frac{{{2}^{n-1}}-1}{n-1}

D

2n+11n+2\frac{{{2}^{n+1}}-1}{n+2}

Answer

2n+11n+1\frac{{{2}^{n+1}}-1}{n+1}

Explanation

Solution

We know, (1+x)n=C0+C1x+C2x2+....+Cnxn{{(1+x)}^{n}}={{C}_{0}}+{{C}_{1}}x+{{C}_{2}}{{x}^{2}}+....+{{C}_{n}}{{x}^{n}}
On integrating both sides 0 to 1, we get
[(1+x)n+1n+1]01\left[ \frac{{{(1+x)}^{n+1}}}{n+1} \right]_{0}^{1}
=[C0x+C1x22+C2x33+....+Cnxn+1n+1]01=\left[ {{C}_{0}}x+\frac{{{C}_{1}}{{x}^{2}}}{2}+\frac{{{C}_{2}}{{x}^{3}}}{3}+....+\frac{{{C}_{n}}{{x}^{n+1}}}{n+1} \right]_{0}^{1}
\Rightarrow 2n+11n+1=C0+C12+C23+.....+Cnn+1\frac{{{2}^{n+1}}-1}{n+1}={{C}_{0}}+\frac{{{C}_{1}}}{2}+\frac{{{C}_{2}}}{3}+.....+\frac{{{C}_{n}}}{n+1}